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Abstract: Motors are important machines used in various industries. They provide power to various pumps, air compressors, refriger-

ation plants, purifiers, and air-conditioning plants. However, the motor may not be optimally coupled with the driven machinery during 

the repair process, and the bearings may become damaged over time as the machine operates. These problems can cause an imbalance 

in the motor shaft, thus resulting in vibrations. Therefore, vibrations and abnormal indicators must be detected timely to ensure machine 

safety. A deep-learning model for anomaly detection based on publicly available bearing data was developed in this study. Bearing 

data from various experiments were plotted and their characteristics were analyzed. Additionally, the vibration amplitude graphs of 

certain sections were saved as images. The saved images were categorized into normal and abnormal, and then classified using a 

convolutional neural network (CNN) model. Evaluation of the model performance on the test set for the trained CNN model shows an 

accuracy of 0.95, which indicates that the model performs well in distinguishing between normal and abnormal vibration amplitudes. 

Furthermore, anomaly detection based on vibration-amplitude threshold values was performed. 
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1. Introduction 

Most components on ships, except for the main diesel engine, 

diesel generator, and boiler, obtain power from motors. These 

motors are typically connected to pumps, air compressors, provi-

sion refrigeration plants, purifiers, and air-conditioning plants via 

coupling or pulleys and V-belts on ships. The abovementioned 

components must be disconnected from the motor for their peri-

odic maintenance.  

However, the connection between the machine and motor may 

be unbalanced depending on the skill level of the marine engi-

neer. For example, the heights of the shafts on the motor and 

pump sides may not match, or, the left and right balances of the 

shafts on the motor and pump sides may not match. In some 

cases, these problems can occur simultaneously.  

In existing ships, the ampere gauge or sound is used to deter-

mine if the connection between the machine and motor is not op-

timal by confirming a high ampere or abnormal noise. However, 

if anomaly detection is not performed in advance, then damage 

can accumulate at the motor bearing, pump, or machine. 

Therefore, an intelligent model that detects abnormalities based 

on artificial intelligence and big data received from sensors must 

be developed. 

Jin et al. detected bearing anomalies and predicted its remain-

ing useful life using an autoregressive model, a health index, a 

threshold based on the Box–Cox transformation, a nonlinear 

model, and a Kalman filter[1]. König et al. classified the multi-

variant wear behavior of sliding bearings based on acoustic emis-

sions. Machine-learning methods were used to detect anomalies 

and convolutional neural networks (CNNs) were used for mul-

ticlass classification[2]. Hiruta et al. created a power spectrum 

from current sensor signals and employed a Gaussian mixture 

model to learn the normal conditions of a motor bearing. Hiruta 

et al. detected a motor-bearing failure mode caused by insuffi-

cient grease by adopting unsupervised learning[3]. Zhang et al. 

proposed a semi-supervised learning approach for bearing anom-

aly detection using a variational autoencoder based on the Case 

Western Reserve University bearing dataset and the University 

of Cincinnati’s Center for Intelligent Maintenance Systems 
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dataset[4]. Lee et al. used a stacked CNN to extract spatial fea-

tures from vibration sensor data, a stacked gated recurrent unit to 

learn temporal features, and a regression layer to predict anomaly 

detection based on bearing data from the National Aeronautics 

and Space Administration (NASA) prognostics data reposi-

tory[5]. Georgoulas et al. performed empirical mode decomposi-

tion and the Hilbert Huang transform to extract a compact feature 

set[6]. Subsequently, they used a hybrid ensemble detector 

trained with normal bearing data to detect deviations from the 

normal condition. Ahmad et al. used an autoencoder model to 

learn the characteristics of normal vibration signals and a thresh-

old to perform anomaly detection based on error values[7]. Roy 

et al. used an autoencoder and an online sequential extreme-

learning machine network to detect the bearing health states of 

the NASA bearing dataset[8].  

In several previous studies, publicly available data were used 

for bearing anomaly detection. Using public data eliminates the 

necessity to purchase expensive equipment and sensors for ex-

periments, reduces time in conducting experiments, and yields 

verified, high-quality data. Therefore, public data were used to 

analyze and develop algorithms for bearing anomaly detection. 

The remainder of this paper is organized as follows: Section 2 

describes the process of obtaining data from the experiment. Sec-

tion 3 presents an analysis of the data obtained. Section 4 de-

scribes the preprocessing. Chapter 5 explains the process of con-

structing a CNN and threshold-based algorithms. Section 6 pre-

sents the prediction results of two anomaly-detection algorithms. 

Finally, Section 7 summarizes the important findings of this 

study. 

2. Data Acquisition

2.1 Acquisition of Data 

Data labeled under “Vibration analysis on rotating shaft” were 

obtained from the “Kaggle” website, which provides free access 

to high-quality data worldwide[9]. The data were obtained from 

an original study and republished in “Kaggle”[10]. 

2.2 Experimental Setup 

Mey et al. established an experiment setup, as shown in Figure 

1, to perform data acquisition. 

As shown in Figure 1, all the main components used in the 

experiment were fixed to an aluminum base plate. The motor 

shaft was connected to another shaft through coupling, and an 

unbalanced holder was installed at the end of the shaft to provide 

an unbalanced condition. The unbalanced holder featured a hole, 

into which weights can be inserted to create an unbalanced con-

dition. The shaft was supported by a roller bearing and roller-

bearing block. Vibration 1 and 2 sensors were installed on the 

side and top of the roller bearing block, respectively. Vibration 3 

sensor was installed at the top of the motor block. Signals from 

the vibration sensors were obtained using a four-channel data ac-

quisition system. The rotational speed of the motor was measured 

using a frequency counter in the data-acquisition system. The de-

tails of the main components used in the experiments are listed 

in Table 1. 

Figure 1: Experimental setup for unbalanced shaft[10] 

Table 1: Specifications of components used in experiment 

Maker Type 
DC motor WEG GmbH UE 511 T 
Motor controller WEG GmbH W2300 

Vibration sensors PCB Synotech GmbH 
PCB-M607A11 / 
M001AC 

Data acquisition 
system 

PCB Synotech GmbH FRE-DT9837 

2.3 Data-Acquisition Process 

The details of the weights installed on the unbalanced holder 

to unbalance the shaft are presented in Table 2. Herein, “D” and 

“E” refer to experiments for development and evaluation, respec-

tively. Although five different weights were used, 10 experiments 

were conducted. "0D/0E" indicates a normal state in which 

weights are not installed. From "1D/1E" to "3D/3E", the mass 

weight was the same, whereas the mass radius differed. "3D/3E" 

and "4D/4E" were tested under the same mass radius but different 

mass weights. 
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Table 2: Specifications of five different weights 

Experiment Radius [mm] Weight [g] 

0D/0E - 0 
1D/1E 14 ± 0.1 3.281 ± 0.003 
2D/2E 18.5 ± 0.1  3.281 ± 0.003 

3D/3E 23 ± 0.1 3.281 ± 0.003 
4D/4E 23 ± 0.1 6.614 ± 0.007 

The rotational speed varies depending on the voltage applied 

to the motor controller. Therefore, in the development experi-

ment, the voltage was increased from 2.0 to 10.05 V; each step 

lasted 20 s, and the difference between the steps was 0.05 V. In 

the evaluation experiment, the voltage was increased from 4.0 to 

8.1 V; each step lasted 20 s, and the difference between the steps 

was 0.1 V. 

3. Data Analysis

3.1 Analysis of Input Voltage 

Figure 2 shows the input voltages for the development and 

evaluation datasets. The voltage was increased for each dataset 

to the values mentioned above, and the same experiment was 

conducted twice. For the evaluation dataset, the difference be-

tween the steps was twice that for the development dataset; there-

fore, the graph shape showed steps. 

Figure 2: Input voltage for development and evaluation datasets 

3.2 Analysis of Vibration-Sensor Amplitude 

Figure 3 shows the three vibration amplitudes of five experi-

ments for the development dataset. A comparison of the vibration 

amplitudes from the three different sensors for the five experi-

ments showed that they exhibited different patterns.  

Figure 4 shows the three vibration amplitudes of the five ex-

periments for the evaluation dataset. A comparison between the 

graphs of the evaluation and development datasets show a larger 

vibration amplitude for the evaluation dataset. Similar to the case 

of the development dataset, different patterns were observed in 

the evaluation dataset when comparing the amplitude between 

the three vibration sensors and the amplitude between the five 

experiments. 

Figure 3: Amplitude from 0D to 4D for three different vibration 

sensors from five different experiments 

Figure 4: Amplitude from 0E to 4E of three different vibration 

sensors in five different experiments 
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At the beginning of the experiment for the development and 

evaluation datasets, we observed significant differences between 

the 0D and 4D datasets; however, this aspect was not considered 

because it was not observed in the stable amplitude state. 

Because the sampling rate of the data-acquisition system was 

4,096 values per second, the data at the starting (0th to 5,000th 

samples) and end (12,000,000th to 12,005,000th samples) points 

were plotted, as shown in Figure 5 to verify the data pattern per 

second. No specific pattern was observed within 1 s and the 

graphs showed a discontinuous vibration amplitude. At the start-

ing point, the amplitude was uniform; however, at the end point, 

the amplitude fluctuated significantly. This pattern was similarly 

observed in Figure 3 and Figure 4. 

Figure 5: Comparison of vibration amplitude between starting 

point (left) and end point (right) for 0D and 4D experiments 

4. Data Preprocessing

In this study, the 0D dataset of vibration sensor 1, which was 

in the normal condition, and the 4D dataset of vibration sensor 1, 

which was in the most unbalanced condition, were used for 

anomaly detection. The evaluation dataset was excluded because 

the input voltage was within the development dataset. However, 

the anomaly detection of the evaluation dataset can be solved us-

ing the same method as that used in this study. 

As shown in Figure 3, a difference was clearly indicated be-

tween 0D and 4D beginning from the 8,000,000th sample. At the 

beginning of the experiment, a significant difference was ob-

served between 0D and 4D; however, this was not considered be-

cause it did not appear in a stable amplitude state. Accordingly, 

data from the 8,000,000th to 12,000,000th samples were used, 

which indicated the end point of the first experiment.  

Using the sliding-window method, 100 images were saved 

each for 0D and 4D with an interval of 40,000 samples. Because 

4,096 samples per second were saved by the data-acquisition sys-

tem, one image represented an amplitude of approximately 10 s. 

The image was saved at a pixel size of 256 × 256. For the 0D and 

4D datasets, 70% was allocated as the training set and 30% into 

the test set to train the CNN model.  

In Figure 6, (a and b) represent the 1st and 100th images for 

the 0D dataset, respectively, and (c and d) represent the 1st and 

100th images for the 4D dataset, respectively. The 100th image 

shows a different pattern compared with the 1st image, as the rpm 

of the 100th image is greater than that of the 1st image.  

During CNN model training, the axes, lines, and letters can 

provide unnecessary information to the model; therefore, only 

the vibration amplitude was saved as an image, as shown in Fig-

ure 6. 

Figure 6: 1st (left) and 100th (right) images of vibration ampli-

tude for 0D (top) and 4D (bottom) datasets of vibration sensor 1 

5. Modeling

5.1 CNN-Based Anomaly Detection 

The CNN is a deep-learning technology that is primarily used 

to extract features from images. It gradually extracts features via 

convolutional computing using several filters. A CNN comprises 

an input layer, convolution and pooling operations, full connec-

tions, and an output layer; dropout layers are occasionally added 

to increase the generalization performance and prevent overfit-

ting[11][12]. 
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The 0D images were normal, whereas the 4D images were ab-

normal; the normal and abnormal images were labeled 0 and 1, 

respectively. As input to the CNN model, training images of size 

(256, 256, 3) were stacked. Consequently, 70% of the normal and 

abnormal images were accumulated to create an array of different 

size (140, 256, 256, 3). Accordingly, a label array of size (140, 1) 

comprising 0s and 1s was created. An array of size (60, 256, 256, 

3) comprising 30% normal and abnormal images was created for

testing, and an array of size (60, 1) was created as a test label. 

Normalization was performed by dividing the values of the train-

ing and test set arrays by 255.  

As images from various rpm ranges were used in this study, 

the CNN model must reflect the rpm range to which the image 

belongs. Therefore, a feature number was used, as shown in Fig-

ure 7. The 100 images were divided into 10 sections, and num-

bers 1–10 were used as feature numbers in the order from low to 

high rpm. 

Figure 7: Process for modeling CNN model 

The process for modeling the CNN is as follows: The CNN 

model comprised four Conv2D, MaxPooling2D, and Dropout 

layers, and the outputs of these layers are passed through a flat-

tened layer. The filters of the Conv2D layers were used sequen-

tially: 8, 16, 32, and 32. The kernel size was 3 × 3, the activation 

function was a rectified linear unit (ReLU), and the padding was 

the same. The pooling size of MaxPooling2D was set to 2 × 2, 

and the dropout rate was set to 25%. The vectors of the flattened 

layer and feature number were concatenated. The concatenated 

vectors were input into dense layers containing 100, 50, 10, and 

2 neurons. In the last dense layer, the sigmoid function was used 

as an activation function to output normal and abnormal condi-

tions, and the ReLU was used in the remaining three dense layers. 

“Sparse_categorical_crossentropy” was used as the loss function, 

Adam was used as the optimizer, and accuracy was used as the 

training-performance metric. The CNN model was constructed 

using the TensorFlow and Keras libraries, and its detailed archi-

tecture is shown in Figure 8. 

Figure 8: Network architecture of trained CNN model 

The CNN model was trained with image and feature number 

arrays as the input and label arrays as the output, with a batch 

size of 30 for 100 epochs. 

5.2 Threshold-Based Anomaly Detection 

As shown in Figure 3, the first cycle ended at approximately 

the 12,500,000th sample. Therefore, the maximum and minimum 

values from the 12,450,000th to the 12,550,000th sample among 

the data from the 0D experiment for vibration sensor 1 were 
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obtained. The maximum and minimum value were 0.084621906 

and -0.098769665 for the 12,453,255th and 12,514,162th sam-

ples, respectively. The line passing through these points, based 

on the origin, was used as the threshold. 

6. Result and Discussion

6.1 CNN-Based Anomaly Detection 

Figure 9 shows the training loss and accuracy for 100 epochs 

of the CNN model. The loss decreased gradually and remained 

low after approximately 50 epochs. Contrary to the model-loss 

graph, the accuracy was approximately one-half that of the prob-

ability prediction at the beginning; however, the accuracy was 1 

after 50 epochs. 

Figure 9: Training loss and accuracy for CNN model 

To evaluate the performance of the trained CNN model, we 

input test image and feature number arrays into the trained CNN 

model, and the prediction results for the testing set were com-

pared using the test labels. The accuracy value was 0.95, thereby 

indicating that the trained CNN model performed well in distin-

guishing between normal and unbalanced conditions for the ro-

tating shaft.  

6.2 Threshold-Based Anomaly Detection 

Figure 10: Threshold-based anomaly detection for 0D and 4D 

datasets 

For the 0D dataset, 75,824 data points exceed the threshold 

line, as shown in Figure 10 (a). The orange and green lines rep-

resent the threshold lines based on the maximum and minimum 

values, respectively. The red dots represent data points that ex-

ceed the threshold lines. 

For the 4D dataset, 108,475 data points exceeded the threshold 

lines, which was 32,651 more data points than that exceeded by 

the 0D dataset. Therefore, we confirmed that anomaly detection 

can be performed, based on the fact that more data points ex-

ceeded the threshold lines as compared with the normal condi-

tion. 

7. Conclusion

Motors are important machines that convert electrical energy 

into mechanical power and are used in various industrial fields. 

Many motors are installed on ships, where power is obtained us-

ing electrical energy generated by diesel generators. Motors are 

used to drive various pumps, air compressors, provision refriger-

ation plants, purifiers, and air-conditioning plants. 

Motor vibration can arise due to the deterioration of bearing 

performance over time or from a suboptimal connection between 

the motor and driven machinery. Detecting these issues in ad-

vance is crucial for extending the lifespans of motors, bearings, 

and machinery.  

Hence, we used publicly available high-quality bearing data 

for this study. Bearing data were plotted, and their characteristics 

were analyzed. Data from normal and extremely unbalanced con-

ditions were used in conjunction with a CNN model to detect 

normal and abnormal conditions. The vibration-amplitude graphs 

were saved as images for each rpm section of the bearing data. 

Additionally, we concatenated the feature-number vector with 

the flattened-layer vector of a convolutional network such that 

the CNN model can predict the results and thus reflect image 

classification based on various rpm sections.  

The training process of the CNN model was confirmed, and 

the prediction performance of the testing set showed an accuracy 

of 0.95, which indicated its effectiveness in detecting normal and 

abnormal vibration amplitudes. 

Anomaly detection was performed based on the vibration-am-

plitude threshold values under normal conditions. The result 

showed that the 4D dataset had 32,651 more data points that ex-

ceeded the threshold lines compared with the 0D dataset. 

Therefore, based on the methodology used in this study, anom-

aly detection can be performed based on 1) vibration amplitude 

images of the motor bearing, whose rpm can vary, and the feature 

number based on the rpm section; and 2) threshold values. 
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