
 
 
 

Journal of Advanced Marine Engineering and Technology, Vol. 46, No. 6, pp. 387~393, 2022 ISSN 2234-7925 (Print) 
J. Advanced Marine Engineering and Technology (JAMET) ISSN 2765-4796 (Online) 
https://doi.org/10.5916/jamet.2022.46.6.387 Original Paper 

 

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted 
non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

Copyright ⓒ The Korean Society of Marine Engineering 
 
 

 

 
Development of energy management system using neural network  

for power electric system 
 

SeongWan Kim1ㆍ SeokCheon Kang2ㆍ MinKi Son3ㆍ HyeonMin Jeon† 

(Received November 15, 2022； Revised December 1, 2022；Accepted December 7, 2022) 
 

 
Abstract: With the international community's efforts to reduce carbon dioxide, the technology to improve the energy efficiency of 

ships has been significantly advanced owing to the development of propulsion and power systems. Among them, the power manage-

ment system in the electric propulsion system, which is a eco-friendly technology, has been transformed to an energy management 

system(EMS) that integrates the battery management system or green technologies to improve system efficiency. The application of 

EMS can improve the efficiency of the power system by applying this technology not only to the electric propulsion system but also 

to the power generation system in merchant ships using the conventional direct mechanical propulsion system. Optimum control of the 

power generation source according to the rule-based strategy, including the load and state of charge of the battery, referring to the 

designer's intentions, is presented in this study. The neural network controller logic is developed, and the stability of the control system 

is analyzed using Matlab/Simulink based on various environments. As a test result, according to the step-by-step changes in load and 

battery status, the designed learning value shows a stable generator output command value in all operation areas and a stable generator 

optimal control output according to various conditions. 
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1. Introduction 
The international community has strengthened regulations on 

emissions from ships, and the IMO(International Maritime Or-

ganization) has tightened regulations on air pollution emitted 

from ships [1]. Accordingly, various alternatives such as 

EEDI(Energy Efficiency Design Index) power system improve-

ment, low-carbon fuel, etc. have been proposed to reduce carbon 

dioxide [2],  and the engine system is also being improved as a 

solution [3]. This affects not only the change of the propulsion 

system, but also the improve the efficiency of the power system. 

In the power system, the conventional parallel running load-shar-

ing power generation system has limitations such as frequent 

maintenance cycle, increased emissions due to the fuel consump-

tion increase by the low efficiency of the power source in the case 

of low-load operation [4]. To improve this, various fuels for en-

gines, types of sources, and efficiency improvement measures for 

power generation sources have been introduced [5][6]. Among  

them, a hybrid power system using a battery system can also be 

a solution to improve system efficiency [7]. The efficiency of the 

system can be improved by the optimal operation of the power 

source and the battery system’s compensation. Comprehensive 

control of the battery management system linked with the exist-

ing power management system can be managed by the EMS(En-

ergy Management System) [8]; the EMS controller is devised and 

used by various control methods [9]. In this study, by applying a 

rule-based strategy, the operation mode of the power generation 

system according to the load condition and battery SOC and the 

operation command for each generator were set. In addition, the 

EMS control results considering the SOC of the battery as a 

power source and the system without considering the SOC’s ef-

fects on the results of the EMS controller were also examined 

through simulation. To improve the efficiency of the system, the 

optimal operation point of the power source is designed to be op-

erated in as many sections as possible, and the battery system is 

designed to compensate for variable load conditions. 
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2. Power management system and energy man-

agement system for ship 

2.1 Conventional Power Management System 
In the case of load sharing in the conventional electric power 

system of a ship, the output of the power generation load operated 

according to the time-varying load condition, as shown in Equa-

tion (1). It is equal to the value obtained by dividing the total 

power load required by the number of operating power sources. 

It is operated in parallel or in a programmed setting as some gen-

erators operate in the optimal operation mode and other power 

sources are allowed to handle the rest of the demanding load. 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝐺𝐺1 + 𝑃𝑃𝐺𝐺2 + 𝑃𝑃𝐺𝐺3    (1) 

In this case, the efficiency of the entire power generation 

source decreases during equivalent parallel operation, which 

leads to low system efficiency; this causes an increase in carbon 

dioxide emissions due to an increase in fuel consumption [4]. 

Even in the case of some optimal operation mode, it is difficult 

to evaluate whether the efficiency of the entire system has been 

improved to a satisfactory level because the efficiency of the low-

load power generation source operated asymmetrically is low. 

When the battery SOC is not considered as reserve power, system 

maintains the SOC level of the battery properly, but when the 

battery SOC is considered, the battery SOC will be completely 

consumed after a specific operation time. The load balancing of 

the system with the battery is represented in Equation (2) 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝐺𝐺1 + 𝑃𝑃𝐺𝐺2 + 𝑃𝑃𝐺𝐺3 + 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵     (2) 

2.2 Control Strategy of Energy Management System not 

Considering Battery SOC 
As shown in Table 1, if the battery SOC is not considered a 

reserve power source, it operates in five operating modes. The 

generator's operation command is designed to be taken as 

𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆,𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉,𝐺𝐺_𝑆𝑆𝑆𝑆𝐵𝐵. α = 𝑃𝑃𝐿𝐿𝑆𝑆𝐵𝐵𝐿𝐿 + 𝑃𝑃𝐺𝐺_𝑚𝑚𝑚𝑚𝑚𝑚  is set in considera-

tion of the minimum generator operation output value in the de-

sign standard of the load standard to designate the initial battery 

charge and the charging section of the battery according to the 

section without considering the battery SOC as a reserve power. 

The output command rule for each source was created. 

2.3 Control Strategy of Energy Management System 

Considering Battery SOC 
When the battery is considered as the reserve power of the 

load, the overall generator output command value is reduced be-

cause the system power is compensated by the battery. As shown 

in Table 2, unlike Table 1, by setting β = 𝑃𝑃𝐿𝐿𝑆𝑆𝐵𝐵𝐿𝐿 − 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, a dif-

ferent operation mode is obtained according to the load condition 

Table 1 : Rule based strategy not considering battery SOC ( 𝛂𝛂 = 𝑷𝑷𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑷𝑷𝑮𝑮_𝒎𝒎𝒎𝒎𝒎𝒎  , 𝑷𝑷𝑮𝑮_𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐𝟐𝟐%, 𝑮𝑮_𝑳𝑳𝑷𝑷𝑶𝑶 = 𝟕𝟕𝟕𝟕% ) 

Power 
Load condition Mode 𝑃𝑃𝐺𝐺1 𝑃𝑃𝐺𝐺2 𝑃𝑃𝐺𝐺3 

α ≤ 𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀 1 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 =  𝛼𝛼 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 
𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀  <  α <  
𝐺𝐺1_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺2_𝑆𝑆𝑆𝑆𝐵𝐵  2-1 𝐺𝐺_𝑆𝑆𝑆𝑆𝐵𝐵 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 =  α − 𝑃𝑃𝐺𝐺1 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 

𝐺𝐺1_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺2_𝑆𝑆𝑆𝑆𝐵𝐵 ≤  α 
<  𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀 + 𝐺𝐺2_𝑀𝑀𝐵𝐵𝑀𝑀 2-2 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 =  1

2
 (𝛼𝛼) , 𝑃𝑃𝐺𝐺1=𝑃𝑃𝐺𝐺2 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 

𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀 + 𝐺𝐺2_𝑀𝑀𝐵𝐵𝑀𝑀  ≤  α 
<  𝐺𝐺1_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺2_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺3_𝑆𝑆𝑆𝑆𝐵𝐵 3-1 𝐺𝐺_𝑆𝑆𝑆𝑆𝐵𝐵 𝐺𝐺_𝑆𝑆𝑆𝑆𝐵𝐵 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉= α − 𝑃𝑃𝐺𝐺1 − 𝑃𝑃𝐺𝐺2 

𝐺𝐺1_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺2_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺3_𝑆𝑆𝑆𝑆𝐵𝐵  ≤  α 
<  𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀 + 𝐺𝐺2_𝑀𝑀𝐵𝐵𝑀𝑀 + 𝐺𝐺3_𝑀𝑀𝐵𝐵𝑀𝑀 3-2 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 = 1

3
(𝛼𝛼) , 𝑃𝑃𝐺𝐺1=𝑃𝑃𝐺𝐺2= 𝑃𝑃𝐺𝐺3 

Table 2  : Rule based strategy considering battery SOC (𝛃𝛃 = 𝑷𝑷𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 − 𝑷𝑷𝑩𝑩𝑳𝑳𝑶𝑶𝑶𝑶) 

Power 
Load condition Mode 𝑃𝑃𝐺𝐺1 𝑃𝑃𝐺𝐺2 𝑃𝑃𝐺𝐺3 

β ≤ 0 0’ 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 
0 < β ≤ 𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀 1’ 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 = β 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 

𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀  ≤  β <  𝐺𝐺1_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺2_𝑆𝑆𝑆𝑆𝐵𝐵 2’-1 𝐺𝐺_𝑆𝑆𝑆𝑆𝐵𝐵 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 =  β − 𝑃𝑃𝐺𝐺1 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 
𝐺𝐺1_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺2_𝑆𝑆𝑆𝑆𝐵𝐵 ≤  β 
<  𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀 + 𝐺𝐺2_𝑀𝑀𝐵𝐵𝑀𝑀 

2’-2 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 =  1
2

 (β) , 𝑃𝑃𝐺𝐺1=𝑃𝑃𝐺𝐺2 𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆 

𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀 + 𝐺𝐺2_𝑀𝑀𝐵𝐵𝑀𝑀  ≤  β 
<  𝐺𝐺1_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺2_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺3_𝑆𝑆𝑆𝑆𝐵𝐵 

3’-1 𝐺𝐺_𝑆𝑆𝑆𝑆𝐵𝐵 𝐺𝐺_𝑆𝑆𝑆𝑆𝐵𝐵 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 =  β − 𝑃𝑃𝐺𝐺1 − 𝑃𝑃𝐺𝐺2 

𝐺𝐺1_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺2_𝑆𝑆𝑆𝑆𝐵𝐵 + 𝐺𝐺3_𝑆𝑆𝑆𝑆𝐵𝐵  ≤  β 
<  𝐺𝐺1_𝑀𝑀𝐵𝐵𝑀𝑀 + 𝐺𝐺2_𝑀𝑀𝐵𝐵𝑀𝑀 + 𝐺𝐺3_𝑀𝑀𝐵𝐵𝑀𝑀 

3’-2 𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉 = 1
3

(β) , 𝑃𝑃𝐺𝐺1=𝑃𝑃𝐺𝐺2= 𝑃𝑃𝐺𝐺3 
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category. The generator operation status is set to 

𝐺𝐺_𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆,𝐺𝐺_𝑉𝑉𝐵𝐵𝑉𝑉,𝐺𝐺_𝑆𝑆𝑆𝑆𝐵𝐵. 

3. Design of energy management system using

neural network 

3.1 Specification and test environment 
To design the controller for EMS according to the designed 

rule, the system capacity (system load, generator engine, and bat-

tery) was selected as shown in Table 3, and the NCR output of 

the generator engine was selected as 2,000 kW considering the 

engine margin. All the design specifications were calculated to 

control the generator engine’s output, as shown in Table 4. 

Table 3 : System specification 

System specification Capacity[kW] 
System load 7,000 

Generator engine 3,000 
Battery 1,000 

Table 4 : Design specification of generator engine 

Figure 1: Specific load profile 

Figure 2: Specific SOC profile 

3.2 Training data for neural network 
To test the responsiveness and stability of the generator output 

command controller of the system according to the time-varying 

load and SOC variation, the environment shown in Figures 1 and 

2 was selected as the final experimental environment.  

Table 5 shows the neural network training values that do not 

consider the battery SOC as a reserve power based on the rule-

based strategy for the generator output command according to the 

ship’s load and the battery SOC value in consideration of the sim-

ulation environment. Table 6 shows the neural network learning 

values considering the SOC value. 

The gray section indicates the operation where the battery is 

no longer charged from the system when the battery SOC value 

reaches 90% or more, and 𝑃𝑃𝐺𝐺_𝑚𝑚𝑚𝑚𝑚𝑚  is set to 0 at α = 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 +

𝑃𝑃𝐺𝐺_𝑚𝑚𝑚𝑚𝑚𝑚 and trained. 

Table 5 : Neural network training value not considering battery SOC 

Load 
[kW] 

7000 6300 5600 4900 4200 3500 2800 2100 1400 700 350 0 

SOC 
[kW] 
1000 

100, 
100, 
100 

90, 
90, 
90 

78.4, 
78.4, 
78.4 

75, 
75, 
50 

82.5, 
82.5, 

0 

75, 
55, 
0 

95, 
0, 
0 

60, 
0, 
0 

25, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
900 

100, 
100, 
100 

90, 
90, 
90 

78.4, 
78.4, 
78.4 

75, 
75, 
50 

82.5, 
82.5, 

0 

75, 
55, 
0 

95, 
0, 
0 

60, 
0, 
0 

25, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
800 

100, 
100, 
100 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

37.5, 
0, 
0 

20, 
0, 
0 

SOC 
[kW] 
700 

100, 
100, 
100 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

37.5, 
0, 
0 

20, 
0, 
0 

SOC 
[kW] 
600 

100, 
100, 
100 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

37.5, 
0, 
0 

20, 
0, 
0 

SOC 
[kW] 
500 

100, 
100, 
100 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

37.5, 
0, 
0 

20, 
0, 
0 

SOC 
[kW] 
400 

100, 
100, 
100 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

37.5, 
0, 
0 

20, 
0, 
0 

SOC 
[kW] 
300 

100, 
100, 
100 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

37.5, 
0, 
0 

20, 
0, 
0 

SOC 100, 100, 100, 88.4, 76.7, 97.5, 80, 75, 90, 55, 37.5, 20, 

LOAD 
[kW] 

TORQUE 
[N ∙ m] 

RPM VOLTAGE 
[V] 

AMP 
[A] 

ω 
[rad/s] 

30 740.3 387 690 25.1 40.5 
60 1174.1 488 690 50.2 51.1 
90 1537.5 559 690 75.3 58.5 

120 1863.3 615 690 100.4 64.4 
150 2163.7 662 690 125.5 69.3 
300 3430.9 835 690 251 87.4 
600 5441.2 1053 690 502.1 110.3 
900 7132.3 1205 690 753.1 126.2 

1200 8641.9 1326 690 1004.1 138.9 
1500 10023.8 1429 690 1255.1 149.6 
1800 11308.4 1520 690 1506.2 159.2 
2100 12549.1 1598 690 1757.2 167.3 
2400 13715.3 1671 690 2008.2 175.0 
2700 14834.9 1738 690 2259.3 182.0 
3000 15915.5 1800 690 2510.3 188.5 
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[kW] 
200 

100, 
100 

100, 
100 

100, 
100 

88.4, 
88.4 

76.7, 
76.7 

97.5, 
0 

80, 
0 

50, 
0 

0, 
0 

0, 
0 

0, 
0 

0, 
0 

SOC 
[kW] 
100 

100, 
100, 
100 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

37.5, 
0, 
0 

20, 
0, 
0 

SOC 
[kW] 

0 

100, 
100, 
100 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

37.5, 
0, 
0 

20, 
0, 
0 

■ = Disable for battery charging

■ = 1 set generator engine running with 20% additional output

for battery charging 

■ = 2 sets generator engine running with 20% additional output

for battery charging 

■ = 3 sets generator engine running with 20% additional output

for battery charging 

■ = 3 sets generator engine running with under 20% additional

output for battery charging 

□ = Disable

Table 6 : Neural network training value considering battery SOC 

Load 
[kW] 

7000 6300 5600 4900 4200 3500 2800 2100 1400 700 350 0 

SOC 
[kW] 
1000 

100, 
100, 
100 

90, 
90, 
90 

78.4, 
78.4, 
78.4 

75, 
75, 
50 

82.5, 
82.5, 

0 

75, 
55, 
0 

95, 
0, 
0 

60, 
0, 
0 

25, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
900 

100, 
100, 
100 

90, 
90, 
90 

78.4, 
 78.4, 
78.4 

75, 
75, 
50 

82.5, 
82.5, 

0 

75, 
55, 
0 

95, 
0, 
0 

60, 
0, 
0 

25, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

0,  
0, 
0 

SOC 
[kW] 
800 

100, 
100, 
100 

91.7, 
91.7, 
91.7 

80, 
80, 
80 

75, 
75, 
55 

85, 
85, 
0 

75, 
60, 
0 

75, 
25, 
0 

65, 
0, 
0 

30, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
700 

100, 
100, 
100 

93.4, 
93.4, 
93.4 

81.7, 
81.7, 
81.7 

75, 
75, 
60 

87.5, 
87.5, 

0 

75, 
65, 
0 

75, 
30, 
0 

70, 
0, 
0 

35, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
600 

100, 
100, 
100 

95, 
95, 
95 

83.4, 
83.4, 
83.4 

75, 
75, 
65 

90, 
90, 
0 

75, 
70, 
0 

75, 
35, 
0 

75, 
0, 
0 

40, 
0, 
0 

5, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
500 

100, 
100, 
100 

96.7, 
96.7, 
96.7 

85, 
85, 
85 

75, 
75, 
70 

92.5, 
92.5, 

0 

75, 
75, 
0 

75, 
40, 
0 

80, 
0, 
0 

45, 
0, 
0 

10, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
400 

100, 
100, 
100 

98.4, 
98.4, 
98.4 

86.7, 
86.7, 
86.7 

75, 
75, 
75 

95, 
95, 
0 

77.5, 
77.5, 

0 

75, 
45, 
0 

85, 
0, 
0 

50, 
0, 
0 

15, 
0, 
0 

0, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
300 

100, 
100, 
100 

100, 
100, 
100 

88.4, 
88.4, 
88.4 

76.7, 
76.7, 
76.7 

97.5, 
97.5, 

0 

80, 
80, 
0 

75, 
50, 
0 

90, 
0, 
0 

55, 
0, 
0 

20, 
0, 
0 

2.5, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
200 

100, 
100, 
100 

100, 
100, 
100 

93.4, 
93.4, 
93.4 

81.7, 
81.7, 
81.7 

75, 
75, 
60 

87.5, 
87.5, 

0 

75, 
65, 
0 

75, 
30, 
0 

70, 
0, 
0 

35, 
0, 
0 

17.5, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 
100 

100, 
100, 
100 

100, 
100, 
100 

93.4, 
93.4, 
93.4 

81.7, 
81.7, 
81.7 

75, 
75, 
60 

87.5, 
87.5, 

0 

75, 
65, 
0 

75, 
30, 
0 

70, 
0, 
0 

35, 
0, 
0 

17.5, 
0, 
0 

0, 
0, 
0 

SOC 
[kW] 

0 

100, 
100, 
100 

100, 
100, 
100 

93.4, 
93.4, 
93.4 

81.7, 
81.7, 
81.7 

75, 
75, 
60 

87.5, 
87.5, 

0 

75, 
65, 
0 

75, 
30, 
0 

70, 
0, 
0 

35, 
0, 
0 

17.5, 
0, 
0 

0, 
0, 
0 

■ = Battery only,

■ = 1 set generator engine running,

■ = 2 set generator engine running

■ = 3 set generator engine running

■ = Maximum operation

□ = Disable

3.3 Neural network application 
The designed neural network controller had a single-layer neu-

ral network; the hidden layers were composed of 30 layers; and 

a neural network controller using Bayesian regularization was 

applied. As shown in Figures 3 and 4, the error in the output 

value of the learned neural network controller can be compen-

sated by the battery system, so it does not affect the output or 

operation performance. 

Figure 3 : Result of errors in neural network training not consid-

ering battery SOC 

Figure 4 : Result of errors in neural network training considering 

battery SOC 

3.4 Training result by neural network controller 
In addition, to verify the control stability of the designed neu-

ral network, the load and battery SOC values as shown in Figures 

5 and 6 that were used for learning were applied to verify that the 

generator output command value matches the learned value and  



Development of energy management system using neural network for power electric system 

Journal of Advanced Marine Engineering and Technology, Vol. 46, No. 6, 2022. 12       391 

Figure 5 : Specific load profile 

Figure 6 : Specific SOC profile 

 ( ■ = No. 1 GE, ■ = No. 2 GE, ■ = No. 3 GE ) 

Figure 7 : Result of neural network controller output tested in 

step load and step battery SOC not considering battery SOC 

 ( ■ = No. 1 GE, ■ = No. 2 GE, ■ = No. 3 GE ) 

Figure 8  : Result of neural network controller output tested in 

step load and step battery SOC considering battery SOC 

to confirm that there are no irregular or uncontrollable areas in the 

control result. Figures 7 and 8 depicts the results, which are stable. 

3.5 Simulation 
The system shown in Figure 9 was designed through 

Matlab/Simulink to apply the unspecified ship power load and 

battery SOC value as input values using the verified neural net-

work controller to make the output command value for the gen-

erator output through the controller which prove the stability of 

the controller. 

Figure 9 : EMS using neural network 

( ■ = No. 1 GE, ■ = No. 2 GE, ■ = No. 3 GE ) 

Figure 10 : Result of neural network controller output tested in 

specific load and battery SOC not considering battery SOC 

( ■ = No. 1 GE, ■ = No. 2 GE, ■ = No. 3 GE ) 

Figure 11 : Result of neural network controller output tested in 

specific load and battery SOC considering battery SOC 
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As shown in Figures 10 and 11, if the battery SOC is not con-

sidered, the required output of the power source is higher. How-

ever, as a result of both designs, the power generation source was 

designed to have a parallel operation form above a certain load 

exceeding the optimum operation output value of the power 

source. 

( ■ = No. 1 GE, ■ = No. 2 GE, ■ = No. 3 GE ) 

Figure 12 : Result of RPM command tested in specific load and 

battery SOC not considering battery SOC 

( ■ = No. 1 GE, ■ = No. 2 GE, ■ = No. 3 GE ) 

Figure 13 : Result of RPM command tested in specific load and 

battery SOC considering battery SOC 

As shown in Figures 12 and 13, the command value converted 

from the generator output command value using the load-RPM 

table designed in Table 4. It is for a command as the generator 

angular speed command. It was confirmed that irregular values 

or oscillation situations did not occur. 

4. Conclusion
Through this study, our novel research made the following 

contributions and findings. 

1) It was simulated through Matlab/Simulink to design a neu-

ral network controller that contributes to the improvement

of system efficiency by applying an EMS that manages the

battery hybrid system to the power system of a general mer-

chant ship. 

2) The error between the designed rule-based control value

and the neural network controller output was minimized us-

ing the Bayesian regularization technique.  

3) In the controller design, the output of the neural network

controller according to the time-varying load is set by set-

ting the optimal operation command of the power source 

according to the designer's intention and comparing the 

case where the battery SOC is considered a reserve power 

source with the case where the battery SOC is not consid-

ered under the same load condition.  

4) It was confirmed that the control characteristics of the com-

mand value were stable in designed load and SOC condi-

tions and in a specific test environment too.

However, for future study, the speed range of the engine should 

be considered for generator control in consideration of the lubri-

cating and mechanical characteristics of the engine. 
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