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Abstract: Maintaining a constant voltage in a power system is very important for the protection of the electrical and electronic 

equipment connected to the power system. There are many types of equipment available to keep power quality high, but the most 

important is an automatic voltage regulator. The control method of an automatic voltage regulator of a synchronous generator is mostly 

phase control or proportional–integral–derivative (PID) control. However, this paper is compares neural-network predictive control with 

PID control, and confirms that the proposed neural-network predictive control is effective in adjusting the voltage through experiments 

conducted by computer simulation. 

It is shown that the terminal voltage of the PID control was measured with a rise time of 0.863 s, a settling time of 3.08 s, and an 

overshoot of 8.23%. The proposed method measured a rise time of 0.58 s, a settling time of 1.02 s, and an overshoot of 0.23%. Through 

the use of the proposed control method, therefore, the output voltage was improved for 48% of rising time, 3.02 times for the settling 

time, and 10% in overshoot. In this paper, it is proven that neural-network-predictive control is more effective than PID control in 

maintaining the constant output voltage of synchronous generators. 
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1. Introduction
In a power system, voltage stability is an essential element to 

protect electric and electronic equipment. If the voltage of the 

power system is not stable, such devices could be frequently 

damaged due to voltage distortion. In order to keep the quality of 

a power system high, there is a range of equipment, such as 

automatic voltage regulators, power system stabilizers and filters, 

that are available. This paper focuses on the control method used 

by the automatic voltage regulator of a generator. 

Various control methods implemented in the automatic voltage 

regulators of synchronous generators have been studied. These 

include PID, PID-combination control, genetic algorithm, slide 

mode, adaptive-optima control, teaching-learning-based 

optimization, multi-objective-external optimization, fractional-

adaptive control, self-tuning control and neural networks [1]-[20]. 

In keeping with these studies, this paper demonstrates an 

improvement in the terminal voltage control of a synchronous 

generator by neural-networks-(NN) predictive control, compared 

with that by PID control. Furthermore, it confirms that the proposed 

control method is superior to other neural-networks methods. 

2. Modeling of Synchronous Generator
The excitation system of a synchronous generator is composed 

of an amplifier, an exciter, a generator and a sensor as displayed 

in Figure 1. Parameters of the transfer function of the system are 

configured such that ka= 10 & τa= 0.1 for the amplifier, ke= 0.4 

& τe= 1 for the exciter, kg= 1 (depending on the load, this varies 

from 0.7 to 1.0) & τg= 1 for the generator, and ks= 1 & τs= 

0.01 for the sensor [10]. 

Figure 1: Simulink Model to the Plant with PID 
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3. Neural Networks Predictive Control 

3.1 Predictive Control 
Predictive control is one of the types to predict the estimated 

value prior to the plant. The predicted control value is obtained by 

using the predictive value of the model, the optimization function, 

and the control method. Given performance function roles to 

minimize predictive values during optimization process, the 

performance function given as below [21]. 
 

J =  ∑ (yr(t + j) − ym(t + j))2N2
j=N1 +   

ρ∑ (u′(t + j − 1) − u′(t + j − 2))2N0
j=1                                               (1) 

 

N1 & N2 : Constant values to indicate the following error and 

the relevant time range 

𝑁𝑁𝑢𝑢 : Value indicating the time region on the control input 

𝑢𝑢′  : Provisional control input value to the neural networks 

𝑦𝑦𝑟𝑟  : Following target value 

𝑦𝑦𝑚𝑚 : Output value of the neural-networks model 

 

The objective of Equation (1) is to define a control value 

based on a target value. Control values should continuously be 

updating in order to minimize the J value in the predictive 

control. 

An updated method for finding the minimum value of J, which 

is presented in this paper, adopts gradient descent methods that 

obtain a minimum point by moving in the direction of the 

negative gradient of the given function. The gradient descent 

method can be illustrated with Equation (2) as follows, 
 

u(k + 1) = u(k) − γ δJ
δu(k)

                                                                         (2) 

 

where,  
 

γ        : Constant 
𝛿𝛿𝛿𝛿

𝛿𝛿𝑢𝑢(𝑘𝑘) : Change in J for the current control input 
 

Future control input values are expressed as future control 

input vectors in Equation (3), 
 

U(k) = [u(k + 1)u(k + 2) … u(k + N)]                                          (3) 
 

The objective function J given by Equation (4) is the first 

partial differential equation for U, 
 

δJ
δU(k)

= [ δJ
δU(k+1)

δJ
δU(k+2) … δJ

δU(k+N)
                                                        (4) 

3.2   Structure of Neural Networks 
In general, the nonlinear dynamic model equation is 

determined by the past data of the input and the output as shown 

in Equation  (5). 
 

    y(k + 1) = f[y(k), y(k − 1), … , y(k − n), 

u(k), u(k − 1), … , u(k − m)]                                                                  (5) 
 

Therefore, in order to train the dynamic model equation using 

neural networks, a Time Delay Neural Network (TDNN) can be 

used as shown in Figure 2. 

 

 
Figure 2: Structure of Time Delay Neural Networks 

 

Considering the neural-network model, the input and output 

values of the plant are entered in the input part of the neural 

network, respectively, and each time-delay value is entered. The 

output of the neural network must be observed. The output of the 

neural network configured to learn the plant output value of the 

next sampling step that is that predictive control function is 

structured. The learning data necessary for the neural-network 

learning should be extracted from the results obtained by 

operating the plant. 
 

The output of the TDNN model is depicted as, 
 

y�(k + 1) = bs + ∑ W2(1, i)N
i=1 ∙ S(Xi)                                               (6) 

 

and 
 

𝑋𝑋𝑖𝑖 = 𝑏𝑏(𝑖𝑖, 1) +  ∑ 𝑤𝑤1(𝑖𝑖, 𝑗𝑗) ∙ 𝑦𝑦(𝑘𝑘 − 𝑗𝑗 + 1) + ∑ 𝑤𝑤1(𝑖𝑖,𝑛𝑛 +𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑗𝑗=1

    𝑗𝑗) ∙ 𝑦𝑦(𝑘𝑘 − 𝑗𝑗 + 1)                                                                                   (7) 
 

3.3 Differential equation of a Neural Networks System 
Generally, the output derivative for the processor input is 

calculated in order to apply the control theory, 
 

δy�(k+1)
δu(k)

= δ
δu(k) (bs + ∑ W2(1, i) ∙ S(Xi)]N

i=1                                   (8) 

 

Equation (9) can be transformed as follows, 
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  δy�(k+1)
δu(k)

= δ
δu(k) (bs +  ∑ W2(1, i) ∙ S′(Xi)

δX1
δu(k)]

N
i=1                    (9) 

 

Then,  
 

S′ = dS
dXi

                                                                                                                 (10) 

 
δX1
δu(k) = δ

δu(k) b(i, 1) + δ
δu(k)

∑ W1(i, j) ∙ y(k− j + 1)n
j=1  +  

δ
δu(k)

∑ W1(i, n + j) ∙ u(k − j + 1)n
j=1                                                 (11) 

 

Considering y(k − 1), y(k− 2), …  y(k− n) values and that 

u(k − 1), u(k − 2), …  u(k − m)  are past values that are not 

influenced by u(k), Accordingly, all summation is zero except for 

j = 1, 
 
δXi
δu(k) = W1(i, n + 1)                                                                                    (12) 

 
δy�(k+1)
δu(k)

= ∑ W2(1, i) ∙ S′(Xi) ∙ W1(i, n + 1)N
i=1                           (13) 

 

Finally, Equation (12) and Equation (13) is an expression that 

TDNN neural network represents input & output characteristics. 

3.4 Neural-Networks Predictive Control 
Predictive control is a method of calculating the control input 

literally using the predicted value of the system. Therefore, if an 

appropriate neural-network model is selected and the learning is 

done well, the neural-network model can express the dynamic 

characteristics of the actual dynamic system well.  

The prediction control algorithm can be constructed using the 

error between the reference input and the predicted value. Figure 

3 is a block diagram illustrating the neural-network predictive 

control system. 

 

 

Figure 3: Neural-Network Model Predictive Control System 
 

 

k: Sampling time  

r(k): Reference input signal 

u(k): Control input value to the plant 

y(k) : Output of the plant 

e(k): Difference value (Error value) between r(k) &  y(k) 

y�(k + 1): Predicted plant output 
 

The control input value is calculated using the predicted value 

rather than the actual output value. By definition, the prediction 

controller minimizes the objective function J, and the objective 

function can be composed of error values as follows. 
 

J = 1
2

e2(k + 1)                                                                                                (14) 

 

e(k + 1) = r(k + 1) − y�(k + 1)                                                        (15) 
 

In order to improve the control performance, this study uses the 

gradient descent method as follows. 
 

u(k + 1) = u(k) − γ δJ
δu(k)

                                                                       (16) 

 

Using the J value and e(k + 1), 
 

δJ
δu(k) = 1

2
[−2e(k + 1) δy�(k+1)

δu(k) =  −e(k + 1) δy�(k+1)
δu(k)

             (17) 

 

Considering TDNN, 
 

𝛿𝛿𝛿𝛿
𝛿𝛿𝑢𝑢(𝑘𝑘)

= −𝑒𝑒(𝑘𝑘 + 1)∑ 𝑊𝑊2(1, 𝑖𝑖) ∙ 𝑆𝑆′(𝑋𝑋1)] × 𝑊𝑊1(𝑖𝑖,𝑛𝑛 + 1)𝑛𝑛
𝑖𝑖=1 (18) 

 

u(k + 1) = u(k) + γe(k + 1)[∑ W2(1, i) ∙ S′(Xi)] ∙n
i=1

W1(i, n + 1)]                                                                                                      (19) 
 

The scalar values may be represented by prediction vectors as 

follows. 
 

R = [r(k + 1), r(k + 2), … , r(k + T)]                                             (20) 
 

Ye = [y�(k + 1), y�(k + 2), … , y�(k + T)]                                         (21) 
 

U = [u(k), u(k + 1), … u(k + T − 1)]                                            (22) 
 

E = [e(k + 1), e(k + 2), … , e(k + T)]                                            (23) 
 

By definition, the prediction controller minimizes the objective 

function J, and the objective function can be expressed in terms of 

error values as follows, 
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J = 1
2

[E ∙ ET]     (24) 

To update the control performance, the gradient descent 

method is used as follows, 

U(k + 1) = U(k) − γ δJ
δU(k)

  (25)  

δJ
δU(k)

= −E δYe
δU(k)

   (26) 

The Jacobian matrix δYe
δU(k)

 is obtained as follows, 

δYe
δU(k)

=

δy�(k+1)
δu(k)

0 0
δy�(k+2)
δu(k)

δy�(k+2)
δu(k+1)

0
δy�(k+T)
δu(k)

δy�(k+T)
δu(k+1)

δy�(k+T)
δu(k+T−1)

    (27) 

4. Simulation and result

4.1 PID control simulation and the result 
Firstly, each gain of the PID control through the Ziegler 

Nichols tuning method in Figure 1 was measured as Kcr : 1.702, 

Pcr : 1.08, Kp : 0.54, Ti = 0.54 and Td = 0.135 as shown in 

Figure 4. 

Figure 4: PID control with the Ziegler Nichols tuning method 

Secondly, PID controller parameters were acquired as 

0.172486 for P gain, 0.167368 for I gain, 0.020729 for D gain and 

5.172102 for the filter coefficient (N) using the automatic tuning 

method.  

The compensator formula is given as follows, 

P + I 1
s

+ D N
1+N1s

     (28) 

As shown in Figure 5, automatic tuning of the PID control of 

the synchronous generator resulted in values of 0.863 s for the 

rise time, 3.08 s for the settling time, and 8.23% for the overshoot 

being obtained. 

Figure 5: PID auto-tuning control of the automatic voltage regulator 

4.2 NN Predictive control simulation and the result 
The Simulink Model of the plant in Figure 6 includes the same 

transfer functions of a synchronous generator. 

Figure 6: Plant Model with NN Predictive Controller 

The parameter input for the NN predictive controller was set as 

in Figure 7. N2 of cost horizon enters 10 for time steps that 

predicted errors are minimum. ρ, Nu of control horizon, is 2 that 

control increasement values are minimized. The search parameter 

was 0.001 for the determination of the line search. The 

minimization routine used was csrchbac. 

Figure 7: Parameter input window of the NN Predictive Controller 

The synchronous generator plant model network was 20 at the 

first layer as seen in Figure 8. The training function was trainlm 

which refers to Levenberg-Marquardt. Furthermore, the objective 

function was  Mean Square Error. 
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Figure 8: Input window for the Plant Identification 

As shown in Figure 9, after training the neural-networks 

predictive control, the configuration was obtained. 

Figure 9: Configuration of Neural Networks 

Following the completion of the training of the system, training 

performance could be comparatively shown between Figure 10 

and Figure 11. 

Figure 10: Validation data for the NN Predictive Control 

Figure 11: Training data for the NN Predictive Control 

By using NN predictive control in a synchronous generator, the 

result in Figure 12 was acquired. Through the proposed control 

method, 0.58 s for the rise time, 1.02 s for the settling time, and 

0.23% for the overshoot on the system were obtained. 

Figure 12: Results of NN Predictive Control 

5. Conclusion
Frequent changes in voltage cause damage to electric and 

electronic devices through switching loss and thermal loss. 

Therefore, maintaining the specified voltage in a power system 

is important. A range of equipment, such as automatic voltage 

regulators, power system stabilizers and filters, can be used to 

keep the voltage of a power system stable. 

This paper dealt with the control method of the automatic 

voltage regulator of a synchronous generator. To verify the 

validity of the proposed method, the results obtained were 

compared with those obtained using PID control. 

Following computer simulations, the terminal voltage from 

PID control is measured with 0.863 s for the rise time, 3.08 s 

for the settling time, and 8.23% for the overshoot. The proposed 

method measured 0.58 s for the rise time, 1.02 s for the settling 
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time, and 0.23% for the overshoot. Through the use of the 

proposed control method, therefore, output voltage was improved 

48% for rise time and 3.02 times for setting time and 10% for 

overshoot. This paper verified that the output voltage of the 

synchronous generator using neural-networks predictive control 

can be improved compared to that obtained using PID control. 
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