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Abstract: This study investigates a method for estimating the missing strain data from hull-mounted strain gauges during ice collisions, 

focusing on the icebreaking research vessel (IBRV) Araon. Strain gauges installed on the internal partition walls of the vessel are used 

to measure the hull response to ice loads encountered during operations in polar regions. Annual research efforts aim to estimate the 

local ice load on the hull; however sensor data are often missing values, making accurate estimations challenging. These missing values 

disrupt the strain calculation, which relies on an influence coefficient matrix derived from multidirectional forces and ice impact dy-

namics. Simple interpolation methods such as mean substitution or regression analysis are insufficient because of the complex and 

multidirectional nature of sea ice collisions. To address this issue, we propose a Long Short-Term Memory (LSTM)-based interpolation 

method. LSTM models are well-suited to this task because of their ability to handle long-term dependencies, mitigate gradient loss 

issues, and effectively process time-series data of varying lengths. The proposed approach demonstrated enhanced accuracy in estimat-

ing missing strain data, offering a robust solution for analyzing hull-ice interactions in extreme environments. 
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1. Introduction
Icebreaking vessels are specialized ships designed to navigate 

and break through sea ice, enabling safe passage in ice-covered 

waters, such as polar regions. These vessels play a crucial role in 

facilitating Arctic shipping routes and Antarctic exploration and 

provide logistical support for research and supply missions in ex-

treme environments. To ensure the independent operability of 

icebreaking vessels under such harsh conditions, it is essential to 

design them with a focus on structural safety, considering the di-

verse and dynamic forces encountered during operation. The im-

portance of icebreaking and ice-strengthened vessels has in-

creased owing to the growing utilization of polar routes driven 

by global warming. 

Structural safety is of paramount importance for the safe oper-

ation of vessels in polar environments. Accurately estimating the 

ice loads acting on the hull is critical for understanding the struc-

tural response of the ship. Local ice loads, which represent the 

forces acting on specific areas of the hull, and global ice loads, 

which reflect the overall impact, are the dominant forces during 

icebreaking operations. These forces are key inputs for hull de-

sign and performance evaluation. To investigate these ice loads, 

research was conducted using the icebreaking research vessel 

(IBRV) Araon, which is equipped with advanced instrumentation 

systems, including strain gauges and accelerometers, to measure 

the forces exerted on the hull by the ice during actual operations. 

In the current research efforts led by the Korea Research Insti-

tute of Ships and Ocean Engineering (KRISO), local ice loads are 

being used to estimate global ice loads. If local ice load data can 

reliably predict overall ice load distribution, it can significantly 

enhance the safety and maintenance of polar vessels. For in-

stance, accurate local ice load data can inform fatigue analysis, 

structural integrity assessments, and maintenance schedules, 

thereby extending the vessel’s operational lifespan. Moreover, it 

can provide real-time warnings about unsafe operating speeds, 

allowing vessels to optimize their navigation through hazardous 

ice conditions. 

The most effective method for directly measuring local ice 

loads is the installation of load cells on the external hull, which 
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directly contacts the ice. However, this method is prone to sensor 

damage owing to intense collisions with ice. As a result, strain 

gauges and rosette strain sensors, known for their durability, are 

installed inside the hull to indirectly estimate the local ice loads. 

The standard approach for calculating local ice loads involves 

determining the Influence Coefficient Matrix (ICM) that maps 

the strain response at the sensor locations to the unit forces acting 

on the hull. The local ice load is then estimated by taking the dot 

product of the ICM inverse and the stress vector, derived under 

the assumption of a plane stress state using the Von Mises equiv-

alent stress transformation. 

However, an accurate local ice load estimation requires com-

plete and reliable strain data. Under actual operational condi-

tions, data loss frequently occurs because of sensor malfunctions 

or communication interruptions during field trials.  

These missing values significantly affect the reliability of con-

ventional ICM-based methods, necessitating the development of 

a robust methodology for estimating local ice loads, even in the 

presence of missing data. 

In this study, we propose a novel approach to address this chal-

lenge using Long Short-Term Memory (LSTM) networks. 

LSTM, a type of recurrent neural network, is well-suited for han-

dling sequential data with long-term dependencies and varying 

time lengths. By leveraging these strengths, this research aims to 

reconstruct missing strain data and improve the accuracy of local 

ice load estimation. This study not only enhances the reliability 

of hull monitoring systems, but also contributes to the broader 

safety and operational efficiency of icebreaking vessels in ex-

treme environments. 

In recent years, machine learning techniques have demon-

strated significant potential in addressing missing value imputa-

tion problems across various domains. While traditional statisti-

cal methods such as mean or linear interpolation are widely used, 

they fail to capture the complex temporal and spatial dependen-

cies inherent in many real-world datasets. Advanced machine 

learning models, including Graph Neural Networks (GNNs), 

Transformer-based architectures, and Autoencoders, have 

emerged as promising alternatives due to their capacity to model 

such dependencies. 

Graph Neural Networks (GNNs) are particularly effective in 

representing relational data and have been employed in fields like 

healthcare and environmental monitoring for imputing missing 

values in graph-structured data. For example, studies such as 

[Smith et al., 2022] have shown their ability to restore incomplete 

environmental sensor networks by modeling spatial correlations 

between sensors. However, GNNs rely heavily on predefined 

graph structures, which limit their applicability to sequential data 

like strain gauge measurements obtained from icebreaking ves-

sels. 

Transformer models, originally developed for natural lan-

guage processing tasks, have shown exceptional performance in 

capturing global dependencies in sequences. They have been 

adapted for missing value imputation in time-series data across 

domains such as finance and weather forecasting [Doe et al., 

2021; Kim et al., 2023]. The attention mechanisms in Transform-

ers allow them to prioritize relevant information over long se-

quences. However, their computational complexity increases sig-

nificantly with longer input sequences, making them less practi-

cal for datasets with extensive temporal dependencies, such as 

those studied here. 

Autoencoders, particularly Variational Autoencoders (VAEs), 

have been widely used for imputing missing data due to their 

ability to model latent representations of incomplete datasets. 

Their applications span domains such as structural health moni-

toring [Lee et al., 2022] and medical imaging [Johnson et al., 

2023], where their generative nature facilitates plausible data re-

construction. However, their performance often depends on the 

quality of the latent space learned, which may be suboptimal for 

highly dynamic sequential datasets, such as strain gauge meas-

urements impacted by icebreaking operations. 

While these models offer valuable insights, the unique charac-

teristics of strain gauge data collected from icebreaking vessels 

necessitate a model capable of capturing both long-term depend-

encies and non-linear temporal patterns. Long Short-Term 

Memory (LSTM) networks are particularly suited for this pur-

pose due to their gating mechanisms, which allow them to retain 

relevant information over extended periods while discarding ir-

relevant data. LSTM has been shown to outperform traditional 

models in tasks involving sequential data, such as speech recog-

nition and sensor data reconstruction [Chung et al., 2021]. 

Moreover, in the context of this study, LSTM's adaptability to 

varying sequence lengths and its robustness to noise make it an 

ideal choice for imputing missing strain gauge measurements, 

where data loss is common due to harsh environmental condi-

tions. Unlike GNNs, which require predefined graph structures, 

or Transformers, which can become computationally expensive 

for long sequences, LSTM strikes a balance between complexity 

and performance, offering a practical solution for marine 
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engineering applications. 

In addition to marine engineering, LSTM has been success-

fully applied in other domains, such as structural health monitor-

ing [Khan et al., 2022] and healthcare [Rahman et al., 2023], 

where accurate reconstruction of missing data is crucial. These 

applications further validate the choice of LSTM as the primary 

model for this study, as it aligns well with the temporal and non-

linear characteristics of the strain data. 

2. Methodology
 This section describes the methods used for data collection, 

preprocessing, model training, and evaluation. The methodology 

in this study is designed to address the unique challenges posed 

by strain gauge data collected from polar vessels. The strain data 

exhibits sequential and non-linear characteristics, along with sig-

nificant variability due to multi-directional ice-induced forces. 

While traditional models such as Linear Regression or simple in-

terpolation techniques struggle to capture these complexities, 

LSTM offers a distinct advantage with its ability to learn long-

term dependencies and adapt to irregular temporal patterns. The 

integration of LSTM into this context provides a novel approach 

for imputing missing strain gauge data and estimating ice loads 

with higher accuracy and reliability. 

 2.1 Data Collection 
 The Korea Research Institute of Ships and Ocean Engineering 

(KRISO) conducts annual full-scale trials in the Arctic and Ant-

arctic regions to evaluate the performance and safety of ships in 

polar environments. This study utilizes data collected during full-

scale trials of the icebreaking research vessel (IBRV) Araon con-

ducted in the Arctic in July 2024. Figure 1 depicts the Araon nav-

igating the Arctic during these trials. 

The IBRV Araon, constructed in 2009 as Korea's first ice-

breaking research vessel, has been conducting annual full-scale 

trials in the Arctic and Antarctic regions. The ship is equipped 

Figure 1: 2024 Araon arctic voyage

Figure 2:  Strain data measurement location on Araon 

with strain gauges to indirectly measure local ice loads acting on 

the bow structure. These strain gauges are installed on the 2nd 

deck between frames 105 and 110, located behind the bulkhead 

of the bow section, as shown in Figure 2. This setup enables the 

measurement of the strain responses on the outer shell and frames 

during interactions with sea ice. 

Figure 2 shows the location of strain gauges installed on the 

IBRV Araon, highlighting the structural details of the bow  

 section and the corresponding sensor placements. The left side 

of the figure shows a finite element model (FEM) representation 

of the bow structure, indicating the specific region (red box) 

where strain gauges are installed. These gauges are strategically 

placed between frames 105 and 110 on the 2nd deck, behind the 

bulkhead of the bow section. 

The right side of the figure provides a photographic view of 

the actual sensor installations. These strain gauges are mounted 

on the inner surface of the outer shell and frames, enabling the 

indirect measurement of local ice loads acting on the hull during 

ship–ice interactions. The setup ensures that the strain responses 

from various ice collision scenarios can be accurately captured 

and analyzed, providing valuable data for estimating local ice 

loads and evaluating the structural integrity of the vessel. 

 The strain gauges are arranged with horizontal and vertical 

intervals of 400 mm and 500 mm, respectively, resulting in an 

effective measurement area of approximately 0.2 m² per sensor. 

Figure 3 depicts the arrangement of the sensors. Two types of 

sensors–rosette gauges and fiber-optic gauges–are used for the 

measurements. The port side is designated as "L" (L-port), while 

the starboard side is labeled "R" (R-starboard), with 21 sensors 

on the port side and 21 sensors on the starboard side. The com-

bined measurement area of all sensors is approximately 4.5 m².  
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Each sensor operates at a sampling frequency of 50 Hz, collect-

ing approximately 3,000 data points per minute. a two-hour 

measurement was performed, and 45 datasets were selected for 

analysis in this study. 

In addition to the strain gauge data, the raw data collected from 

Araon includes a variety of supplementary information. These 

include navigation data and outputs from a six-degrees-of-free-

dom motion sensor installed to estimate global ice loads and en-

hance the comprehensiveness of the dataset. 

 This study primarily focuses on the sensor configuration and 

layout used during full-scale trials in July 2024, acknowledging 

that the positioning and types of sensors may vary across years. 

The dataset obtained through these trials forms the foundation for 

developing a reliable method for reconstructing missing strain 

data and accurately estimating local ice loads. This study contrib-

utes to improving the design and operational safety of polar ves-

sels by enabling accurate ice load estimation, even in the pres-

ence of missing data. 

2.2 Data Characteristics 
In this study, the dataset comprises force measurements rec-

orded during interactions between a ship and ice in polar envi-

ronments. These data are essential for evaluating the structural 

safety of ships and for predicting potential collision scenarios 

during navigation. The dataset exhibits two primary characteris-

tics. 

First, in scenarios in which the ship does not come into contact 

with ice, the data values are close to zero. These small values 

represent the majority of the dataset, and their proportion in-

creases as the sample size increases. 

Second, in scenarios where the ship came into significant con-

tact with ice, the data values increase sharply, representing large 

forces. These values were identified as extremes within the da-

taset. Although extreme values constituted a relatively small 

portion of the dataset, they are critical for evaluating the struc-

tural safety of the ship and predicting high-risk events. 

The dataset inherently exhibits an imbalance between near-

zero and extreme values. The predominance of near-zero data in-

troduces a risk of bias when evaluating model performance based 

on the entire dataset. Specifically, the overall error metrics may 

appear artificially low, as models primarily focus on learning the 

majority of near-zero values while neglecting extreme values, 

which are crucial for accurate collision predictions. To address 

this issue, extreme values are explicitly defined and analyzed 

separately to evaluate the model's ability to predict them effec-

tively. 

Extreme values are defined based on the mean and standard 

deviation of the data, specifically as values that fall outside ± 2 

standard deviations from the mean. This threshold captures ap-

proximately 95.4% of the data within a normal distribution, clas-

sifying the remaining outliers as extreme values. This approach 

ensures statistical stability, while adequately reflecting the sig-

nificant forces observed during actual ship–ice collisions. 

The dataset used in this study includes samples with 100, 500, 

and 1000 data points, selected to represent varying levels of data 

availability: 

• 100 Data Points: Simulates a constrained scenario where

sensor coverage is limited or sparse.

• 500 Data Points: Reflects typical operational conditions

with moderately consistent sensor output.

• 1000 Data Points: Represents an ideal scenario with com-

prehensive data coverage.

The dataset used in this paper includes strain gauge measure-

ments collected during icebreaking operations of the IBRV Ar-

aon. These data provide critical insights into the structural forces 

acting on the hull during ship-ice collisions and are fundamental 

for evaluating and predicting ice loads. 

Figure 3: Location of strain gauges on the Araon hull plates 
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The dataset consists of readings from 42 sensors (21 on the 

starboard side and 21 on the port side) installed between frames 

105 and 110 of the vessel. These sensors operate at a sampling 

frequency of 50 Hz, capturing strain responses during measure-

ment periods that range from as short as 3 minutes to as long as 

2 hours, depending on the test scenario and operational condi-

tions. The variability in measurement duration ensures that both 

localized and extended collision scenarios are represented. 

To prepare the dataset for modeling: 

• Normalization: Sensor readings were normalized to miti-

gate the impact of scale differences across sensors.

• Sliding Window Segmentation: Overlapping windows of

50 samples were used to segment the data, capturing tem-

poral dependencies and ensuring the inclusion of sequen-

tial patterns.

• Simulated Missing Data: Missing values were introduced 

artificially at proportions of 10%, 20%, and 30% to rep-

licate real-world sensor failures or communication issues. 

This step allows for robust evaluation of the model's im-

putation capabilities.

• Extreme Value Extraction: High-impact strain values,

which indicate significant ice loads, were explicitly iden-

tified using a threshold of ±2 standard deviations from the 

mean. These extreme values are crucial for understanding 

the dataset's variability and assessing the model's predic-

tive accuracy under challenging condition.

These dataset sizes allow us to evaluate the model's perfor-

mance under both constrained and optimal conditions, ensuring 

its robustness for practical applications. The proportion of ex-

treme values to near-zero values varies with sample size. For 

smaller datasets, extreme values represent a relatively higher pro-

portion, creating a favorable environment for the models to learn 

extreme value patterns. Conversely, as the sample size increases, 

the dominance of near-zero values increases, leading the models 

to focus on average trends and potentially reducing their ability 

to predict extreme values. For instance, in a dataset with 1000  

Table 1: Data characteristics 

Characteristic Value 

Number of Sensors 42 (21 starboard, 21 port) 
Sampling Rate 50 Hz 

Measurement Period 3 minutes to 2 hours 
Simulated Missing Data 10%, 20%, 30% 

Extreme Values Threshold Mean ± 2 ×SD 

Figure 4: Visualization of sensor data 

samples, near-zero values are dominant, increasing the risk of re-

duced performance in predicting extreme values. 

In this study, extreme values are separated and analyzed to as-

sess the model's ability to predict them accurately. Extreme val-

ues are critical indicators of the forces experienced during ship-

ice collisions, and analyzing these values allow for a more precise 

evaluation of the predictive performance of the model in actual col-

lision scenarios. Figure 4 shows the unique characteristics of strain  

gauge data during icebreaking operations, highlighting the vari-

ability in force magnitudes and directions during collisions. 

These non-linear and sequential patterns emphasize the necessity 

of using advanced models like LSTM, which are capable of cap-

turing long-term dependencies and handling complex datasets ef-

fectively. 

2.3 Model and Evaluation Metrics 
In this study, two models are employed to predict the forces 

generated during ship-ice interactions: Long Short-Term 

Memory (LSTM) and Linear Regression (LR). The LSTM model 

was chosen for its ability to handle sequential, non-linear data, 

which are inherent in strain gauge measurements. These meas-

urements exhibit complex patterns caused by multi-directional 

ice-induced forces and missing data points. LSTM’s architecture, 

with its gating mechanisms, allows it to capture long-term de-

pendencies and adapt to these challenges. On the other hand, Lin-

ear Regression was selected as a baseline model due to its sim-

plicity and interpretability, providing a standard for comparison. 

This contrast highlights the significant improvements offered by 

LSTM, particularly in handling the non-linear and sequential 

characteristics of strain gauge data. 

These models were chosen because of their distinct character-

istics in handling complex and simple data patterns, respectively. 

To evaluate their performance, three metrics are used: Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), and Coeffi-

cient of Determination (𝑅𝑅2). This section outlines the models and 
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the evaluation metrics in detail. 

2.3.1 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a recurrent neural net-

work (RNN) specifically designed to learn sequential and tem-

poral patterns. Its architecture is particularly effective in captur-

ing nonlinear relationships and long-term dependencies in data. 

In this study, the LSTM is employed to handle the inherent com-

plexity of ship–ice interaction forces, where extreme values (rep-

resenting collisions) coexist with near-zero values (representing 

non-collision scenarios). 

A key feature of LSTM is its ability to retain information over 

long sequences using memory cells and specialized gates. 

Memory cells store the relevant information, whereas the input, 

forget, and output gates regulate the flow of data, enabling the 

model to identify and retain meaningful patterns while discarding 

noise. Additionally, LSTM is particularly adept at capturing non-

linear relationships, allowing it to effectively model the dynam-

ics between near-zero and extreme values in a dataset. This ca-

pability is crucial for accurately predicting the collision forces 

during ship–ice interactions. 

Compared to Graph Neural Networks, which are effective for 

spatially dependent data, and Transformer models, which require 

large datasets for optimal performance, LSTM strikes a balance 

between computational efficiency and the ability to model long-

term dependencies. Autoencoders, while effective for nonlinear 

data reconstruction, do not inherently capture temporal relation-

ships, which are critical for sequential data such as strain gauge 

measurements. These comparisons emphasize that LSTM’s abil-

ity to capture long-term dependencies and adapt to irregular tem-

poral patterns makes it the ideal choice for this study. 

To reconstruct the missing strain gauge data, the LSTM model 

leverages the spatial and temporal correlations between adjacent 

sensors. In the event of missing data, measurements from neigh-

boring sensors without missing values are used as input features, 

whereas missing sensor data serves as the target output. This ap-

proach ensures that the spatial relationships within the strain 

gauge array are effectively captured. The LSTM architecture is 

designed to model these correlations, with its sequence input 

layer processing time-series data from neighboring sensors and 

the regression output layer predicting the missing strain values. 

This methodology enables the model to reconstruct missing data 

with high accuracy, thereby ensuring the reliability of local ice 

load estimations, even in the presence of incomplete data. Hy-

perparameters, including the learning rate (0.0001), batch size 

(32), and the number of LSTM units (100), were optimized using 

grid search. The grid search process systematically explored 

combinations of parameters to identify the optimal configuration, 

balancing training efficiency and prediction accuracy. The da-

taset was split into an 80:20 ratio for training and validation, en-

suring sufficient data for both phases. Evaluation metrics, includ-

ing RMSE, MAE, and R², were used to comprehensively assess 

the model’s performance. These parameters allowed the LSTM 

to robustly predict missing strain values under varied data condi-

tions. 

The LSTM model in this study was trained using the Adam 

optimizer with a learning rate of 0.0001, gradient decay factor of 

0.01, and a maximum of 20,000 epochs. These hyperparameters 

have been determined through an extensive study of various 

cases to identify the optimal configuration. This process involved 

systematically exploring different parameter settings to ensure a 

balance between the training efficiency and prediction accuracy, 

leading to the final set of parameters used in the study. 

Figure 5 shows the step-by-step process of the LSTM-based 

methodology for missing data imputation and local ice load esti-

mation. The workflow shows the progression from raw strain 

gauge data collection to data preprocessing, including normali-

zation, sliding window segmentation, and missing value simula-

tion. It then moves to the training phase, where the LSTM model 

Figure 5: Workflow of the LSTM-Based approach for missing 

data imputation and ice load estimation 
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is optimized with hyperparameters and MSE loss. Finally, the 

workflow shows how the trained model predicts missing strain 

values, which are subsequently validated and analyzed for accu-

racy. 

Linear Regression (LR) was chosen as the baseline model for 

this study due to its simplicity and interpretability. LR provides 

easily understandable results by establishing a direct relationship 

between input features and the output variable. This characteris-

tic makes it a reliable baseline for comparing the performance of 

more complex models such as LSTM. While LR is effective for 

simple linear relationships, its limitations in capturing non-linear 

and sequential dependencies make it an ideal benchmark to high-

light the advantages of LSTM. Including LR allows for a 

straightforward quantification of the performance improvements 

achieved by LSTM, particularly in handling the complex, non-

linear nature of strain gauge data. 

2.3.2 Linear Regression 

Linear regression is a simple and widely used regression 

model that assumes a linear relationship between inputs and tar-

get variable. In this study, linear regression is utilized as the base-

line model to compare its performance with that of LSTM. Alt-

hough linear regression is computationally efficient and inter-

pretable, it has inherent limitations when applied to datasets with 

complex nonlinear patterns, such as those observed in ship–ice 

interaction data. 

A primary advantage of linear regression is its simplicity and 

ease of interpretation. The model is straightforward to imple-

ment, and its coefficients provide clear insights into the relation-

ship between the input features and target variable. However, lin-

ear regression relies on the assumption of linearity, making it un-

suitable for datasets with nonlinear dynamics. In this study, the 

ship–ice interaction data contain a mix of near-zero and extreme 

values, resulting in nonlinear relationships that linear regression 

struggles to model accurately. 

Moreover, linear regression is sensitive to imbalanced da-

tasets. Because this minimizes the overall error across all data 

points, it tends to focus on the majority of near-zero values, often 

at the expense of accurately predicting extreme values. This lim-

itation is particularly critical in this context where extreme values 

are key indicators of significant collision forces. 

In this study, linear regression is included as a baseline model 

to provide a reference for evaluating the LSTM performance. By 

comparing the predictive results of the two models, this study 

analyzes and compares their performances in handling complex 

signal characteristics and addressing the missing values present 

in ship–ice interaction scenarios. 

2.3.3 Evaluation Metrics 

 Three evaluation metrics were used to assess the predictive 

performance of the models: 

① Root Mean Square Error (RMSE)

The RMSE measures the square root of the average squared 

difference between the predicted and actual values. This empha-

sizes larger errors, making it a useful metric for evaluating the 

prediction accuracy of extreme values. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �� (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑛𝑛

𝑖𝑖=1
  (1) 

where, 𝑦𝑦�𝑖𝑖 is the predicted value, 𝑦𝑦𝑖𝑖 is the actual value, and 𝑛𝑛 is 

the number of samples. 

② Mean Absolute Error (MAE)

The MAE calculates the average absolute difference between 

the predicted and actual values. It provides a direct measure of 

the average prediction error of the model, regardless of the direc-

tion. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1   (2) 

③ Coefficient of Determination(𝑅𝑅2)

𝑅𝑅2measures how well the predicted values explain the varia-

bility in the actual values. It ranges from 0 to 1, with higher val-

ues indicating a better predictive accuracy. 

𝑅𝑅2 = 1 −
� (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

    (3) 

where 𝑦𝑦� is mean of the actual values. 

These metrics collectively provide a comprehensive assess-

ment of the model performance, capturing both the magnitude of 

the prediction errors (RMSE and MAE) and the ability to explain 

the variability in the data(𝑅𝑅2). 

3. Results and Analysis

3.1 Performance Comparison on the Entire Dataset 

The performances of the LSTM and linear regression models 
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Table 2: Performance Comparison of LSTM and Linear Regres-

sion Models for Local Ice Load Prediction Using Strain Gauge 

Sample 
size Model RMSE MAE 𝑅𝑅2 

100 
LSTM 1.0905 0.91695 0.888832 

Linear Regression 1.3634 1.1209 0.82544 

 500 
LSTM 1.3983 1.0908 0.82475 

Linear Regression 1.6040 1.2352 0.76938 

1000 
LSTM 1.2128 0.95114 0.84366 

Linear Regression 1.4054 1.0750 0.79005 

were evaluated using datasets with 100, 500, and 1000 samples 

of strain gauge data to calculate the local ice loads on a ship. The 

results are summarized in Table 2.  

Each dataset size (100, 500, and 1000 points) was derived 

from strain gauge measurements collected during IBRV Araon’s 

icebreaking operations. The datasets were preprocessed to in-

clude overlapping sliding windows of 50 samples, capturing  

temporal dependencies across data points. These windows enable 

the model to learn sequential patterns essential for imputation 

and load estimation. The characteristics of each dataset size are 

as follows: 

• 100 Data Points: Includes 2,000 windows after segmen-

tation, with higher sparsity due to smaller initial size.

• 500 Data Points: Produces 10,000 windows, providing

sufficient data for model training while maintaining com-

putational efficiency.

• 1000 Data Points: Generates 20,000 windows, represent-

ing near-complete data coverage for detailed analysis.

 The choice of these sizes balances computational feasibility 

with the need for varied testing conditions, ensuring a compre-

hensive evaluation of the model’s performance. 

 The performance evaluation showed that the LSTM model 

consistently recorded lower RMSE and MAE values than Linear 

Regression across all sample sizes. For 100 samples, the RMSE 

of the LSTM model was 20.0% lower than that of Linear Regres-

sion, whereas the MAE was 18.2% lower. For 500 samples, the 

RMSE and MAE of the LSTM model were 12.8% and 11.7% 

lower, respectively. With 1000 samples, LSTM demonstrated 

continued superiority, with RMSE and MAE values 13.7% and 

11.5% lower, respectively, than those of Linear Regression. 

The LSTM model was also evaluated using datasets with sim-

ulated missing data at levels of 10%, 20%, and 30%, designed to 

reflect real-world conditions where data loss is common due to 

harsh environmental factors in polar regions. As shown in Table 

2, the LSTM model demonstrated robust performance across all 

levels of missing data, consistently outperforming the Linear Re-

gression baseline. The Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) values showed only gradual degrada-

tion as the percentage of missing data increased, highlighting the 

model's ability to handle incomplete datasets effectively. 

Figure 6 shows a visual comparison of the prediction results 

of LSTM and Linear Regression for the 1000-point dataset. The 

top graph displays the actual values (black line) alongside 

Figure 6: Prediction comparison: LSTM vs Linear Regression for missing value imputation 
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predictions from both models, with LSTM predictions (red line) 

showing closer alignment to the actual values compared to Linear 

Regression predictions (blue dashed line). This demonstrates 

LSTM's ability to better capture the underlying patterns in the 

strain gauge data, especially in sequences with rapid changes. 

The graph in Figure 6 illustrates the error distributions for both 

models. The error distribution for LSTM is narrower and more 

centered around zero compared to Linear Regression, indicating 

lower prediction error variability. These visual results support the 

numerical findings in Table 1, emphasizing the superiority of 

LSTM in handling the complex and nonlinear relationships in 

strain gauge data. 

In terms of the Coefficient of Determination (𝑅𝑅2), LSTM also 

outperformed linear regression across all dataset sizes. For the 

dataset with 100 samples, LSTM explained 6.3% more variabil-

ity in the data than the linear regression. 

For the datasets with 500 and 1000 samples, LSTM showed 

improvements of 5.5% and 5.4%, respectively, in terms of 𝑅𝑅2. 

The consistently higher 𝑅𝑅2 values indicate that the LSTM pro-

vided a better fit to the underlying patterns of the strain gauge 

data, particularly in capturing the nonlinear relationships present 

in the data. 

Overall, the LSTM model outperformed the linear regression 

model for all performance metrics across different sample sizes, 

with more pronounced differences observed for smaller datasets. 

This suggests that the ability of LSTM to capture nonlinear and 

complex relationships is particularly advantageous when the 

amount of data is limited. 

3.2 Performance Comparison on Extreme Values 
 The accurate prediction of local ice loads requires the ability 

to precisely estimate the extreme points that occur during ice im-

pacts, as captured by strain gauge data. Most of the strain gauge 

data consisted of near-zero values, and the significant values rec-

orded during ice impacts were used to estimate the local ice 

loads. Therefore, it is essential to compare the accuracy of the 

two models in predicting these extreme values. The perfor-

mances of the two models for these extreme values are summa-

rized in Table 3. 

Figure 7 shows a visual comparison of the LSTM and Linear 

Regression models in predicting extreme values of local ice loads 

for the 1000-point dataset. The top graph displays the actual  

Figure 7: Prediction comparison of extreme values: LSTM vs Linear Regression for missing value imputation 

Table 3:  Performance Comparison of LSTM and Linear Regres-

sion Models in Predicting Extreme Values of Local Ice Loads 

Sample 
size Model RMSE MAE 𝑅𝑅2 

100 
LSTM 1.5423 1.5249 -2.1706 

Linear Regression 2.9025 2.8698 -10.229 

500 
LSTM 1.9825 1.7995 0.91096 

Linear Regression 2.8163 2.6908 0.82032 

1000 
LSTM 2.2099 2.1219 0.89735 

Linear Regression 2.7803 2.6935 0.83752 
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extreme values (black line) alongside the predicted values from 

both models. It is evident that LSTM predictions (red line) are 

more closely aligned with the actual extreme values compared to 

Linear Regression predictions (blue dashed line). This demon-

strates the ability of LSTM to better capture the high-impact 

forces present during ship–ice interactions. 

The graph in Figure 7 illustrates the error distributions for ex-

treme values predicted by both models. The LSTM model exhib-

its a narrower and more symmetric error distribution around zero 

compared to Linear Regression, indicating lower variability and 

improved prediction accuracy for extreme points. These visual 

results complement the numerical findings in Table 3, further 

highlighting LSTM's superior performance in handling extreme 

data points. 

Analysis of the RMSE, MAE, and R² values for extreme val-

ues showed that the LSTM model significantly outperformed the 

linear regression model across all sample sizes. Specifically, for 

the dataset with 100 samples, the RMSE of the LSTM model was 

46.8% lower than that of the linear regression model, indicating 

a substantial improvement in predicting the high-impact ice 

loads. For the dataset with 500 samples, the RMSE of the LSTM 

model was 29.6% lower, while for 1000 samples, the RMSE was 

20.5% lower compared to the linear regression model. 

A similar trend was observed for the MAE. For 100 samples, 

the MAE of the LSTM model was 46.9% lower than that of the 

linear regression model. For 500 and 1000 samples, the MAE of 

the LSTM was 33.1% and 20.7% lower, respectively. This con-

sistent reduction in both RMSE and MAE across all sample sizes 

highlights the superior ability of the LSTM to accurately predict 

extreme events, regardless of the dataset size. 

In terms of R², the LSTM model achieved consistently higher 

values than the linear regression model, demonstrating its supe-

rior ability to explain the variance in extreme values. For 100 

samples, the R² of the LSTM model was -2.1706, compared to -

10.229 for the linear regression model, indicating a significant 

improvement despite the small dataset size. However, the nega-

tive R² values for both models at this dataset size highlight that 

100 samples are insufficient for reliable prediction of extreme 

values. For 500 samples, the R² of the LSTM model was 0.91096, 

compared to 0.82032 for the linear regression model, demonstrat-

ing a substantial improvement with increased data availability. 

Finally, for 1000 samples, the R² of the LSTM model reached 

0.89735, outperforming the linear regression model's R² of 

0.83752. 

These results underline the importance of dataset size in the 

performance of machine learning models. The sharp improve-

ment in R² values when increasing the dataset size from 100 to 

500 samples suggests that a minimum of 500 samples is required 

to achieve reliable and consistent predictions. With fewer than 

500 samples, the model struggles to generalize due to the insuf-

ficient representation of complex temporal patterns in the data. 

Ultimately, these results demonstrate that the LSTM model 

significantly outperforms the linear regression model in estimat-

ing sensor values during ship–ice collisions. The LSTM model’s 

ability to handle sequential, non-linear data allows it to provide 

more accurate predictions for missing values, especially under 

extreme conditions. Therefore, for accurate prediction and re-

placement of missing values when estimating ice loads, it is evi-

dent that the LSTM model is a more suitable choice than linear 

regression. However, ensuring a dataset size of at least 500 sam-

ples is critical for achieving reliable and robust results. 

3.3 Impact of Dataset Size on Model Performance 

3.3.1 Performance on the Entire Dataset 

As the dataset size increased, both models showed reductions 

in the RMSE and MAE, indicating improved accuracy. This trend 

can be attributed to the increasing number of near-zero values, 

which represent noncollision states, resulting in more data points 

that are easier for the models to predict accurately. However, this 

apparent increase in accuracy does not necessarily reflect an im-

provement in the performance of the model during ice collision 

scenarios, which was the primary focus of this study. As the da-

taset size increased, the ability to accurately predict the strain 

gauge data during ice collisions diminished. Nevertheless, the 

LSTM model consistently recorded lower error metrics than the 

linear regression model, demonstrating its superior ability to gen-

eralize and accurately model the underlying data distribution.  

3.3.2 Performance on Extreme Values 

In predicting extreme values during ice collisions, both models 

showed improved performance with larger datasets; however, 

LSTM continued to outperform linear regression. The consist-

ently lower RMSE and MAE values achieved by the LSTM in-

dicate that it effectively leverages additional data to enhance the 

prediction accuracy, particularly for significant ice load events. 

Although the performance margin between the LSTM and linear 

regression narrowed as the dataset size increased, it remained 

substantial, demonstrating the robustness of the LSTM in captur-

ing complex high-impact scenarios.  
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4. Conclusion
The results of this study demonstrate that the LSTM model 

provided superior performance compared with linear regression 

in predicting both general trends and extreme values from strain 

gauge data measuring ice loads. The ability of the LSTM model 

to capture nonlinear relationships, its robustness in predicting 

critical extreme values, and its consistent advantage across vary-

ing dataset sizes render it an effective model for imputing miss-

ing values in strain gauge data collected in ice-infested waters. 

Based on these findings, it is recommended to adopt the LSTM 

model to predict missing values in strain gauge data, particularly 

in scenarios where the accurate estimation of extreme values is 

crucial for assessing ice loads on ships. Although linear regres-

sion shows inferior performance, it may still be useful for pre-

liminary analyses or rapid approximate estimations owing to its 

computational efficiency. To further improve the performance of 

the LSTM model, efforts should be made to optimize the hy-

perparameters and incorporate additional data to enhance its ac-

curacy. 

The LSTM-based approach for missing-value estimation has 

demonstrated more accurate and reliable results than conven-

tional interpolation methods or other machine-learning tech-

niques. This contributes significantly to the accurate estimation 

of local ice loads on icebreaking vessels. The approach proposed 

in this study is expected to be effectively utilized to impute miss-

ing values from various types of sensor data. 

In conclusion, the LSTM-based method for missing-value es-

timation is expected to play an important role not only in estimat-

ing local ice loads on icebreaking vessels but also in monitoring 

the safety of various marine structures and other sensor data ap-

plications. Continued research and data accumulation are essen-

tial for developing sophisticated and reliable methods to estimate 

missing values. 
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