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Abstract: Failure mode and effects analysis (FMEA) has been widely applied across various industries because of its ability to identify 

potential risk factors and calculate the risk priority number (RPN) by ranking risks. Maritime autonomous surface ships (MASS) have 

emerged as a core component of the Fourth Industrial Revolution in the shipping industry. Consequently, studies have been conducted 

to apply the FMEA to risk assessment in MASS. However, most studies have focused on the ship itself from a macroscopic perspective, 

with little research on the risk analysis of engine room operations in an unmanned environment. Therefore, in this study, an FMEA 

was conducted on a freshwater generator system in the engine room of a stage-2 autonomous ship with input from three experts. In 

addition, the evidential reasoning technique was introduced to address the limitations of the traditional RPN calculation, which can be 

subjectively influenced by the evaluator’s expertise and background. This approach demonstrates that subjective and qualitative RPN 

calculations can be transformed into more comprehensive and quantitative results. Using this methodology, the study identified ejector 

pump malfunction as the highest-risk failure mode among the five potential hazards suggested by experts in the system. 
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1. Introduction

As the autonomous driving technology for transportation con-

tinues to advance, there is a growing need for risk analysis tools 

to evaluate the safety and reliability of systems that incorporate 

these new technologies. Failure mode and effects analysis 

(FMEA) is an engineering technique used to define, identify, and 

eliminate failure modes in systems, designs, processes, and ser-

vices before predictable or potential failures, problems, or errors 

affect users. The ultimate objective of this technique is to deter-

mine the risk priority among multiple failure modes by assigning 

a score to the risk of each identified failure mode and ensuring 

that appropriate follow-up actions are performed based on the 

priority [1]. This risk priority is called the risk priority number 

(RPN), and its value is obtained by multiplying three elements: 

occurrence (O), severity (S), and detection (D) of failure, as 

shown in Equation (1). 

𝑅𝑃𝑁 ൌ 𝑂 ൈ 𝑆 ൈ 𝐷  (1) 

The values of the three elements O, S, and D generally range 

from 1 to 5 (referred to as scores or ratings), although this range 

can be extended from 1 to 10 depending on the judgment of the 

group conducting the risk assessment. Owing to its advantages in 

evaluating risks and assigning priorities through calculation for-

mulas, the FMEA has been applied in various fields and indus-

tries. It encompasses various stages of industrial development, 

including design, production, and operation. 

The International Maritime Organization specifically named 

the autonomous ship the “maritime autonomous surface ship” 

(MASS), and various scientific technologies mobilized during 

the development process have become central to the Fourth In-

dustrial Revolution in shipping. Autonomous ships plan and ex-

ecute operational tasks using automatic systems, and provide op-

erational control and decision-making support based on big data. 

This is expected to reduce the workload of crew members and 

managers, and eliminate human error factors. 

The engine room of a ship houses the main engine and auxil-

iary machinery that generates propulsive power. As the environ-

ment transitions from a manned to an unmanned automated 
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system, new risk factors are expected to emerge. Therefore, stud-

ies that systematically identify and evaluate the potential risks in 

the engine room are crucial for ensuring the safe operation of au-

tonomous ships. In response, previous studies have applied the 

FMEA to MASS for the risk assessment of unmanned ship oper-

ating systems [2]-[4]. 

However, most previous studies conducted risk assessments 

only between risk factors corresponding to higher-level concepts 

from a macroscopic perspective. For example, Ahmet Lutfi Tun-

cel [5] primarily focused on evaluating the potential risks related 

to human error, interaction with manned ships, interaction with 

the physical environment, cyberattacks, and equipment failure. 

Considering that the development of autonomous ships began in 

Europe in 2012 and has continued for over 10 years [6], numer-

ous studies have indicated that academic efforts in this area have 

primarily concentrated on navigation [7]-[10]. For instance, stud-

ies have been conducted on applying artificial intelligence tech-

nology to navigation to improve route prediction and autono-

mous navigation capabilities, as well as on effective unmanned 

operation plans with ports. Legal issues regarding autonomous 

ships in the event of an accident have also been discussed 

[11][12]. However, studies related to the engine room systems of 

autonomous ships have been limited to the development of de-

vice-monitoring technologies [13][14]. In autonomous ships, 

data currently checked onsite by crew members are monitored 

and used as control data according to the unmanned environment 

and operational purposes. 

Considering these changes, there is a need for an evaluation 

method for systems with several potential risks and uncertainties 

in the engine room and for an opinion collection algorithm that 

can objectively gather the individual risk assessment of autono-

mous ships from experts with diverse experiences. 

2. Methodology

2.1 FMEA Linguistic Scale and Limitations 

The FMEA has proven to be one of the most important early 

preventative initiatives in the system design, production, and ser-

vice phases. The analysis method involves determining the scale 

of risk factors (O, S, D) by considering the linguistic scale and 

definitions in Tables 1 and 2, and then applying it to Equation 

(1). 

Table 1: Linguistic scale of risk parameters O, S, and D 

Scale Risk  parameter 
Occurrence 
(O) 

Severity 
(S) 

No Detection 
(D) 

1 Very low  
(VL) 

Negligible 
(N) 

Highly unlikely 
(HU) 

2 Low 
(L) 

Marginal 
(MA) 

Unlikely 
(U) 

3 Average 
(A) 

Moderate 
(MO) 

Average 
(A) 

4 High 
(H) 

Critical 
(CR) 

Likely 
(L) 

5 Very High 
(VH) 

Catastrophic 
(CA) 

High likely 
(HL) 

Table 2: Indices of occurrence, severity, and no detection 

Risk parameters Definition 

Occurrence (O) 

Very low (VL) Failure is unlikely but possible dur-
ing lifetime 

Low (L) Likely to happen once a year 
Average (A) Occasional failure 
High (H) Repeated failure 
Very High (VH) Failure is almost inevitable or likely 

to happen repeatedly 

Severity(S) 

Negligible (N) At most a single minor incident or 
unscheduled maintenance required 

Marginal (MA) Minor system damage. Operations 
interrupted slightly and resumed to 
its usual operational mode within a 
short period 

Moderate (MO) Moderate system damage. Opera-
tions and production interrupted 
marginally and resumed to its usual 
operational mode 

Critical (CR) Major system damage. Operations 
stopped. High degree of operational 
interruption 

Catastrophic (CA) Total system loss. Very high sever-
ity ranking when a potential failure 
mode affects sailing operations 

No Detection(D) 

Highly unlikely (HU) Possible to detect without checks or 
maintenance 

Unlikely (U) Possible to detect through regular 
checks or maintenance 

Average (A) Difficult to detect through intensive 
checks or maintenance 

Likely (L) Difficult to detect through intensive 
or regular checks or maintenance 

High likely (HL) Impossible to detect even through 
intensive or regular checks or 
maintenance 
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Despite its advantage of being able to evaluate risk by priori-

tizing failure modes based on calculation results, the FMEA has 

the following limitations [1]: 

• It relies heavily on expert judgment, making its evaluation

subjective. 

• It relies mainly on qualitative evaluation, often resulting in a

lack of quantitative data. 

• The RPN is calculated by simple multiplication; therefore, if

even one low-scoring element is included, the overall score may 

decrease. This may result in less consistency with the actual risks. 

To overcome these limitations, this study applies the evidential 

reasoning (ER) technique to an FMEA evaluation formula. This 

approach aims to mitigate the subjectivity of qualitative evalua-

tions and enhance the objectivity and precision of the RPN cal-

culation results, which can be simplified by multiplication 

[1][4][15]. 

2.2 Evidential Reasoning Method 

The ER method is a multiattribute decision-making method 

developed to solve complex decision-making problems. This 

technique integrates multiple expert opinions to address deci-

sion-making challenges. It quantitatively handles the uncertainty 

and ambiguity of individual opinions, enabling more accurate de-

cision-making. 

The first step in the ER technique is to calculate the degree of 

belief by assigning weights to experts based on their career and 

experience. 

Assuming that the expert evaluation process is performed by 

experts 𝑒௜ ሺ𝑖 ൌ 1, 2, ⋯ , 𝐿ሻ , where 𝐿  is the total number of ex-

perts, the expert group contributing to this study can be defined 

as 𝐸 ൌ ሼ𝑒ଵ, 𝑒ଶ, ⋯ , 𝑒௜, ⋯ , 𝑒௅ሽ . At this point, the relative weight 

between experts is expressed as 𝑤 ൌ ሼ𝑤ଵ, 𝑤ଶ, ⋯ , 𝑤௜, ⋯ , 𝑤௅ሽ, 

where 𝑤௜ represents the weight of the 𝑖௧௛ expert. In addition, 𝑤௜ 

has a value between 0 and 1, and the sum of the weights of all the 

experts is defined as 1. 

The evaluation levels 𝑁 considered by the experts are speci-

fied as 𝐻 ൌ ሼ𝐻ଵ, 𝐻ଶ, ⋯ , 𝐻௡, ⋯ , 𝐻ேሽ . 𝛽௡,௜  refers to the 𝑖௧௛  ex-

pert’s evaluation of the variable 𝑛 and represents the expert’s de-

gree of belief. Additionally, 𝛽௡,௜ ൒ 0  and ∑ 𝛽௡,௜
ே
௡ୀଵ ൑ 1 . 𝛽௡  re-

fers to the degree of belief in the variable 𝐻௡, and it is possible 

to combine the belief levels of several experts using an ER algo-

rithm through Equations (2)-(3) below. 

𝑚௡,௜ ൌ 𝑤௜𝛽௡,௜ (2)

𝑚ு,௜ ൌ 1 െ ෍ 𝑚௡,௜

ே

௡ୀଵ

ൌ 1 െ 𝑤௜ ෍ 𝛽௡,௜

ே

௡ୀଵ

 (3)

In Equation (2), the 𝑖௧௛ expert’s belief regarding the variable 

𝑛  is multiplied by the expert’s importance, resulting in 𝑚௡,௜ , 

which is the basic probability mass. Accordingly, 𝑚௡,௜ refers to 

the basic probability mass obtained by the expert for the variable 

𝐻௡, and 𝑚ு,௜ represents the probability mass not assigned to any 

parameter variable by the 𝑖௧௛ expert. 

𝑚௡,ூሺ௜ାଵሻ ൌ 𝐾ூሺ௜ାଵሻሺ𝑚௡,ூሺ௜ሻ𝑚௡,ሺ௜ାଵሻ ൅ 𝑚௡,ூሺ௜ሻ𝑚ு,ሺ௜ାଵሻ (4)

൅𝑚ு,ூሺ௜ሻ𝑚௡,ሺ௜ାଵሻሻ 

𝐾ூሺ௜ାଵሻ ൌ ቎1 െ ෍ ෍ 𝑚௜,ூሺ௜ሻ𝑚௝,௜ାଵ

ே

௝ୀଵ,௝ஷ௜

ே

௜ୀଵ

቏

ିଵ

(5)

𝑤ℎ𝑒𝑟𝑒, i ൌ 1, ⋯ , 𝐿 െ 1 

𝛽௡ ൌ
𝑚௡,ூሺ௅ሻ

1 െ 𝑚ு,ூሺ௅ሻ
 (6)

Here, 𝑚௡,ூሺ௜ାଵሻ  represents the aggregated basic probability 

that combines the basic probability masses of the 1௦௧  to 

ሺ𝑖 ൅ 1ሻ௧௛  experts. The combined process was calculated using 

Equations (4)-(6). Here, 𝐾ூሺ௜ାଵሻ is a normalization coefficient to 

normalize the combined probability mass of the experts, and 𝛽௡ 

represents the degree of belief in which all the experts’ opinions 

are finally aggregated. 

In this study, the expert group consisted of three people who 

had been working on autonomous ship projects for more than 

three years and were able to conduct risk assessments based on 

their work experience and majors. Accordingly, the total number 

of experts was 𝐿 ൌ 3 , and the group was defined as 𝐸 ൌ

ሼ𝑒ଵ, 𝑒ଶ, 𝑒ଷሽ. The relative weights between the experts were set at 

𝑊 ൌ ሼ𝑤ଵ ൌ 0.5, 𝑤ଶ ൌ 0.3, 𝑤ଷ ൌ 0.2ሽ, with boarding experience 

as a significant factor in determining the weight. The variable 𝑁 

refers to the number of evaluation grades in this study. As there 
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are five evaluation levels for O, S, and D, 𝑁 is defined as 5, and 

𝛽௡,௜ represents the 𝑖௧௛ expert’s degree of belief regarding the var-

iable 𝑛. 

The research method used in this study, which combines the 

methodologies described above, is illustrated in Figure 1. 

Figure 1: Research methodology 

3. Research consideration

3.1 Setting Environmental Conditions for MASS Engine 

Room Operation 

The technological development stages of autonomous ships 

and the expected ship operating environments are as follows. 

Stage 1: Partially autonomous operation, supporting crew 

member decision-making 

Stage 2: Minimum number of people on board, remote control 

possible from shore 

Stage 3: Unmanned environment, remote control possible 

from shore 

Stage 4: Fully unmanned autonomous navigation 

This study considers the second stage, characterized by a min-

imum number of crew members on board and a remote-control-

lable environment from the shore. Accordingly, it was assumed 

that the scope of work for the crew was limited to maintenance 

as requested by the MASS controller from the shore. 

3.2 Selection of Research Target System 

The FMEA target system used in this study is a freshwater gen-

erator. The reasons for selecting this auxiliary system over the 

main engine are as follows: 

First, the market is shifting toward installing internal combus-

tion engines that use eco-friendly fuels owing to carbon emission 

regulations. Consequently, the criteria for selecting the main en-

gines are expected to vary significantly depending on the type of 

ship, route, and cargo. As the supportive subsystem configuration 

for the main engines differs depending on the type of fuel used, 

the main engine was excluded from the study. 

Second, the auxiliary system provides a clear representation of 

the current and future system changes. With a minimized number 

of crew members on board, it is anticipated that it will be easier 

to identify which equipment in the auxiliary systems is less crit-

ical. In the future, several parameters that are currently monitored 

manually by engineers will be processed as digital data for re-

mote monitoring and control from the shore. Therefore, an aux-

iliary system that facilitates a comparison between the current 

and future states was chosen as the research target. 

Table 3: Expected freshwater system monitoring data 

System AS-IS TO-BE 

Drinking water tank Supplying water 
for seafarers 

Deleted or mini-
mized 

Distilled water sa-
linity 

Monitored Monitored and 
controlled 

Jacket water in/out-
let temp. 

Monitored Monitored and 
controlled 

FW tank level Monitored Minimized and 
monitored 

Seawater ejector 
in/outlet pressure 

Local gauge Monitored 

Seawater supply 
line temp. 

Local gauge Monitored 

… … … 
Flowmeter of fresh-
water generator 

Local gauge Monitored 

Distilled pump out-
let pressure 

Local gauge Monitored 

For example, a drinking water tank can be designed based on 

the number of crew members, which can be minimized or elimi-

nated as autonomous-ship technology progresses to the second 

stage. Salinity is a critical criterion for freshwater production 

through seawater distillation. While salinity has been monitored 

as data in the past, it will become an essential control parameter 

for operating the freshwater system in the future. This is because 

the freshwater produced serves as the cooling water for the main 

engine and generator. If salinity is not properly controlled, it 

could lead to risks, such as the corrosion of cooling  

system pipes. Therefore, it is expected that, in addition to salinity, 

a significant amount of data will be monitored for the operation 
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of the freshwater generator system, as shown in Table 3. 

4. Results

4.1 FMEA Result 

Considering the research conditions outlined in Sections 3.1 

and 3.2, the expected FMEA results for the freshwater generator 

system are listed in Table 4. Maintaining the appropriate salinity 

of the freshwater produced by the system is anticipated to be a 

critical parameter in its operation. Given the limited number of 

personnel available to perform immediate maintenance in the en-

gine room, it is advisable to prioritize the five failure modes 

based on their risks, and then determine the appropriate response 

measures. 

4.2 ER Application and Aggregated Results 

The three experts described earlier evaluated the risks listed in 

Table 4 based on their work experience and knowledge. They 

assessed the occurrence probability of each failure mode, the se-

verity of the influence of each failure mode on the operation of 

the engine room system, and the probability of failure detection.  

Each expert provided a degree of belief in five risk parameters. 

Table 5 presents the aggregated risk results based on the experts’ 

opinions, calculated using Equations (2)-(6): 

Using the ER technique, a more objective RPN calculation re-

sult could be derived compared with the existing method in 

Equation (1). This was achieved by considering the weights and 

resolving the conflicts of opinion among the experts. For exam-

ple, when evaluating FM1, one expert provided their belief re-

garding the probability of failure to detect a fault as HU=10%, 

U=20%, and A=50%, with 20% remaining uncertainty. This sub-

jectivity was addressed by correcting the uncertainty using 

Equation (3) and normalizing the degree of belief of each expert 

using Equation (5). 

The final RPN results for each failure mode, obtained using 

the weighted-sum method by assigning weights from 1 to 5 in 

order of increasing risk to the five risk parameters and applying 

them to Table 5, are listed in Table 6. The results confirmed that 

the most dangerous failure mode in Table 4 was FM3 (ejector 

Table 4: FMEA list 

Failure No. Failure mode Failure causes Consequences 

FM1 Salinity level high • Salinity sensor malfunction
• 3-way valve malfunction
• Demister clogged

• Causes scale and corrosion inside the pipes
of the system where fresh water is supplied 

FM2 Jacket water temperature low • Incorrect jacket water temperature 
setting 
• Jacket water temp control valve
malfunction 

• Evaporation of sea water does not occur
• Deterioration of performance of freshwater
generator heat exchanger 

FM3 Ejector pump malfunction • Air/brine ejector malfunction
• Sea water line strainer clogged

• F.W generator vacuum low
• Decrease in freshwater production

FM4 F.W tank level high • Distillate pump malfunction
• 3-way valve malfunction

• Freshwater tank overflow

FM5 Vacuum press low • Evaporator leakage
• Ejector pump low amp.
• Sea water flow increase
• Separator mesh clogging

• Fresh water production low
• Salinity high

Table 5: Aggregated results for the risk parameters of each failure mode

Failure 
mode 

O S D 

VL L A H VH N MA MO CR CA HU U A L HL 

FM1 0.01 0.28 0.45 0.19 0.06 0.05 0.10 0.43 0.35 0.06 0.46 0.32 0.17 0.04 0.00 

FM2 0.11 0.49 0.31 0.09 0.00 0.08 0.24 0.34 0.31 0.03 0.53 0.25 0.17 0.05 0.00 

FM3 0.17 0.48 0.26 0.08 0.01 0.08 0.27 0.23 0.37 0.06 0.11 0.10 0.22 0.26 0.31 

FM4 0.53 0.29 0.11 0.06 0.01 0.39 0.31 0.20 0.08 0.03 0.08 0.48 0.29 0.13 0.02 

FM5 0.02 0.13 0.35 0.45 0.05 0.03 0.22 0.40 0.25 0.10 0.39 0.42 0.13 0.05 0.01 
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pump malfunction), whereas the F.W. tank level was given rank 

5, representing the lowest risk among the five risks. 

Table 6: Results of RPN and its ranks 

Failure mode RPN Rank 

FM1 Salinity level high 17.62 3 

FM2 
Jacket water temperature
low 

12.41 4 

FM3 Ejector pump malfunction 24.70 1 

FM4 F.W tank level high 8.80 5 

FM5 Vacuum press low 19.99 2 

The advantages of applying the ER method to the FMEA are 

as follows: 

The traditional RPN calculation in the FMEA is obtained by 

multiplying the evaluation grades from 1 to 5. This approach re-

sults in a simple calculation; if one low-scoring element is in-

cluded, the overall score is significantly lowered. This simplicity 

makes it challenging to overcome the subjectivity of the experts 

performing RPN and the limitations of qualitative evaluation, 

thus complicating the determination of the actual risk and the 

consistency of RPN results. 

By applying the ER technique, a more detailed RPN calcula-

tion was possible. The ER method assigns an expert’s degree of 

belief to each evaluation grade, enabling a more nuanced assess-

ment. By incorporating weights for each evaluator and quantita-

tively handling the uncertainty of subjective opinions, this study 

could derive a final judgment that simultaneously integrated both 

quantitative and qualitative information from the FMEA. 

5. Conclusion

To prepare for the coming era of unmanned ships, this study 

combines the FMEA and ER methods to evaluate the risks asso-

ciated with the MASS engine room, which involves numerous 

uncertainties and development possibilities. Assuming the sec-

ond stage of autonomous-ship development as the research con-

text, this study analyzed the failure modes that could occur in a 

freshwater generator system and conducted an FMEA to evaluate 

the risk priorities. The ER method was introduced to address the 

subjectivity of the qualitative evaluation and enhance the preci-

sion of the assessment. 

Three experts used their experience and knowledge to assess 

the risks listed in Table 4, including the probability of occurrence 

of each failure mode, the severity of its influence on the system 

operation, and the likelihood of failure to detect the failure mode. 

The ER method, utilizing Equations (2)-(6), was employed to 

aggregate the experts’ opinions. By quantifying the uncertainty 

remaining in the risk assessment using these equations, we could 

objectively consolidate the experts’ evaluations. Table 6 presents 

the RPN rankings and calculated risks. The analysis confirmed 

that the most dangerous failure mode for the freshwater generator 

system was FM3, which was an ejector pump malfunction. 

The significance of this study is as follows: 

• By identifying the potential failure modes in the freshwater

generator systems of autonomous ships and systematically eval-

uating their risks, this study clarified the prioritization of follow-

up measures. 

• The application of the ER methodology to the traditional

FMEA demonstrated that it is possible to overcome the limita-

tions of conventional FMEA methods, achieving a more precise 

and quantitative risk assessment by incorporating the objectivity 

of quantitative calculations into qualitative expert evaluations. 

• This study provides specific FMEA application cases for the

engine room systems of autonomous ships, and offers founda-

tional data to ensure the stability of MASS in the future. 

Future studies should focus on conducting risk assessments 

that target the main engine. Unlike auxiliary equipment, the main 

engine operates in conjunction with various utility systems, such 

as heating, cooling, and lubrication systems. Consequently, the 

potential risks and complexity in an unmanned environment are 

expected to be more diverse and intricate than the cases discussed 

in this paper. In this context, further studies should explore meth-

ods for enhancing the safety of engine rooms in autonomous 

ships through additional risk assessments of various engine sys-

tems. 

The research method and case study presented herein are ex-

pected to serve as foundational data for improving the safety and 

efficient operation of autonomous ships by providing a more ob-

jective and quantitative evaluation of engine room risks. This 

study is also anticipated to be a crucial preliminary step that can 

be utilized in various aspects, such as design improvement, the 

establishment of safe operation strategies, the optimization of 

maintenance plans, regulatory compliance, the development of 

educational programs, and setting future research and develop-

ment directions. 
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