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Abstract: In the ocean, whitecaps resulting from various factors such as wind and ships induce considerable disturbances in image-

based object detection and recognition models. These disturbances limit the accuracy of these models. Previous studies have employed 

object detection models to detect and remove irregular phenomena of nonuniform sizes and shapes. Because these models are trained 

on stereotyped rectangular objects, expressing the exact shape of an actual object remains challenging. Therefore, to ensure the accu-

racy of real-time optimal whitecap detection in a marine environment, we applied and analyzed core instance segmentation models 

based on real images captured by a drone. The instance segmentation models used in the experiment were selected as two models, 

namely anchor- and anchor-free models, and four models were analyzed to ensure real-time accuracy and processing speed. 
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1. Introduction 

Advancement in artificial intelligence (AI) technology has re-

sulted in technological convergence toward AI in almost all fields. In 

computer vision, this convergence is being adopted into various en-

vironments based on the environmental robustness of machine learn-

ing. Artificial intelligence (AI) is increasingly being incorporated in 

the marine industry. However, directly applying terrestrial technolo-

gies in marine environments is challenging because of the difficulty 

of data collection and weather complexity [1]. Whitecaps [2][3] can 

occur when strong winds cause the crests of waves to break or when 

persistent winds in one direction result in strong waves. Therefore, 

whitecaps can be indicators for wind strength and direction. Further-

more, whitecaps can occur when waves hit a reef, indicating shallow 

water or the presence of underwater obstacles, providing critical nav-

igation information. Furthermore, observing whitecaps caused by 

schools of fish can be used for fishing operations. Thus, whitecap 

detection provides insights into real-time wind and sea conditions, 

underwater topography, and fish movement and highlight the neces-

sity for continuous observations. Whitecaps observed through video 

are surface-level phenomena that occur in oceans. When combined 

with systems such as radar, which can analyze the environment be-

low the surface, this phenomenon enables comprehensive analysis. 

Because whitecaps are caused by numerous natural interactions, 

their size, shape, and ratio are not constant. Because of the irregular-

ity of whitecaps, existing object detection models detect objects by 

setting areas of fixed sizes and ratios, rendering learning the charac-

teristics of objects accurately difficult. Furthermore, the color of the 

sea, which changes depending on the weather and climate during 

classification tasks, is a major limitation. 

Despite these limitations, numerous methods have been proposed 

for detecting events and objects, such as coastal boundaries and port 

surveillance, occurring at sea. Studies [4][5][6] have improved the 

object detection accuracy at sea by combining general object detec-

tion with white-wave detection. Hu et al. [4] applied image post-pro-

cessing techniques and anomalous detection to address the problem 

that the amount of sunlight considerably affects white-wave detec-

tion performance. Although this method can perform precise white-

wave detection, the method has a complex structure for detecting 

outliers and requires considerable computation, rendering real-time 

detection difficult. Atkin et al. [5] applied YOLOv5, an object-detec-

tion model, to analyze the quality of surfing waves. However, this 

method has a low detection resolution for irregular white waves, ren-

dering multi-detection difficult in environments in which many 

white waves occur. Vrecica et al. [6] proposed a method for detecting 
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whitecaps in images using U-Net, which is a segmentation model. A 

deep-learning-based segmentation model was applied to detect 

whitecaps. However, real-time processing is complex because of U-

Net, which exhibits processing speed problems. Processing speed 

and accuracy problems could be attributed to limitations in improv-

ing the recognition accuracy caused by the structural method of the 

object detector and the complexity of the segmentation model being 

applied. Therefore, to commercialize maritime irregular whitecap 

detection technology, lightweight segmentation technology should 

be applied to guarantee real-time performance. 

In this study, based on actual drone images, we analyzed various 

state-of-the-art instance-segmentation-based white-wave detection 

models to ensure optimal white-wave detection accuracy and real-

time performance in a maritime detection environment.  

We analyzed the results by applying two anchor-based and two 

anchor-free methods, depending on the presence or absence of an-

chors in the instance segmentation model. 

2. Related Works

2.1 Anchor-Based Segmentation Models 

Segmentation techniques include semantic segmentation [7][8], 

which distinguishes the classes of all objects in an image, and in-

stance segmentation [9][10][11][12], which distinguishes only spe-

cific objects of classes in an image. Early segmentation directly esti-

mates the region of an object in an image. However, new models have 

applied an object detector. In contrast to detectors that estimate the 

location of an object using a bounding box, instance segmentation 

outputs a region in pixel units to identify the shape of an object. Sim-

ilar to object detection, segmentation has two approaches, namely 

anchor-based [9][10] and anchor-free methods [11][12], depending 

on the presence or absence of an anchor. The anchor, which is the 

method proposed for object detection, can be used for bounding box, 

and the model achieves high learning efficiency by setting this an-

chor in advance. Mask R-CNN, a representative method of instance 

segmentation, is a two-stage segmentation model that is designed to 

enable faster segmentation by applying a parallel mask branch for 

mask prediction to the branch of the regressor based on the object 

detection model. Because these two stages are classified into object 

detection and semantic segmentation, each stage incorporates an in-

dependent method. This model exhibits high segmentation perfor-

mance by replacing the RoI pooling method with RoIAlign to predict 

accurate pixel masks and resolve misalignments between features 

and RoIs. 

TensorMask [10], a representative one-stage segmentation model 

that combines object detection and semantic segmentation, improves 

the computational speed and segmentation performance of overlap-

ping instances by using a four-dimensional (4D) tensor for dense in-

stance detection. 

Anchor-based segmentation models can obtain stable and highly 

accurate results by segmenting candidate regions. However, these 

models are highly dependent on the anchors generated in advance, 

which renders the detection of significant changes in the size or ratio 

of an object difficult. 

2.2 Anchor Free-Based Segmentation Models 

Existing anchor-based segmentation models exhibit insufficient 

usability because of fixed-size anchors and additional parameter tun-

ing. Therefore, anchor-free segmentation incorporates Fully Convo-

lutional One-stage Object detection (FCOS) [13] instead of anchors 

that pregenerate object candidate regions. FCOS extracts feature 

maps of various sizes by using the Feature Pyramid Network (FPN) 

[14] structure. Each feature map finds the object’s center point to be 

detected and limits the overgeneration of candidate object regions. 

Because this model sets the region based on the center point, the re-

gion display standard is not the box starting point but the center point 

and the lengths of the left, right, top, and bottom from the center 

point. 

CenterMask, a representative one-stage segmentation model in-

corporating FCOS, improves segmentation performance through a 

Spatial Attention-Guided Mask (SAG-Mask) and Spatial Attention 

Module (SAM). 

Representative instance segmentation methods, such as Mask R-

CNN, require ROI operations. The axis-aligned features of the exist-

ing RoIs can result in excessive computational consumption when 

objects in the input image exhibit irregular shapes. Conditional con-

volutions for instance segmentation (CondInst) [12], an anchor-free-

based segmentation model, solves instance segmentation with an 

FCN [7]. Instead of using an ROI, in this model, a dynamic instance 

recognition network conditioned on instances is used such that the 

mask head is compact and the processing speed is fast. 

3. Experimental Environment Configuration

Based on Whitecaps Analysis 

3.1 Characteristics Analysis of Whitecaps 

We conducted a comprehensive analysis based on the most com-

monly used square-shaped patches for AI detection to determine 

whether we could distinguish oceans and whitecaps. 
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Figure 1: Whitecaps video image captured by a drone 

Figure 2: Results of applying DBSCAN using patched images of the 

sea and whitecaps 

Figure 1 depicts a whitecap video captured by a drone. White-

caps, a natural phenomenon, exhibit irregular characteristics in terms 

of their appearance, size, and other characteristics. Furthermore, de-

pending on weather conditions, such as light reflection, illuminance, 

and brightness, distinguishing the background ocean and whitecaps 

can be difficult. Therefore, we applied DBSCAN [15] to analyze 

whether white waves could be distinguished from the ocean as a sin-

gle data feature.   

Figure 2 depicts the results of applying DBSCAN to images 

of the ocean and whitecaps. The images were captured using a 

drone at 30 frame per second (FPS) for 15 s, and the camera UI 

and sky region were removed through preprocessing. To divide 

the images into small sections of the ocean and whitecaps, we 

divided them into 37,800 patch images using patches of 100 × 

100 pixels and used them for analysis. 

Red dots represent ocean patches and blue dots represent patches 

containing whitecaps. First, the distribution of ocean patches was 

observed as a result of multiple clusters, and the clusters were also 

low in density, rendering distinguishing ocean features difficult.  

The results of analyses have attributed this phenomenon to the color 

values varying depending on the shooting time and location due to 

sea waves, differences in illuminance, among other factors. There-

fore, each ocean patch shares a single characteristic. The whitecap 

patch (blue dot) shares some similarities with the ocean patch. Thus, 

distinguishing it as a characteristic unique to whitecaps is challeng-

ing. Thus, the images were visually analyzed by dividing 

Figure 3: Example of images clustered into regions A and B: (a) the 

ocean patch in A, (b) whitecaps patch 

them into regions A and B, where whitecap data distribution ap-

peared. 

Figure 3 depicts an example of the images clustered into regions 

A and B. (a) and (c) represent some of the ocean patches and white-

caps in cluster A, respectively. (b) and (d) represent ocean patches 

and whitecaps in the Cluster B region, respectively. 

Among images in (a) and (c), some images are perfectly blue; 

however, irregular afterimages are caused by light reflection and 

waves. Compared with images in (b) and (d), these afterimages can 

be recognized as different parts with different colors. Furthermore, 

they have the same characteristics because of their irregularity. How-

ever, a white color patch is distinctive.  

By distinguishing and cluster-white waves and the sea using 

DBSCAN, whitecap patches can be clustered to some extent by fea-

tures such as color. However, distinguishing these from white waves 

when sea patches include white waves and light reflections is diffi-

cult. Thus, applying techniques such as the CNN [16] and object de-

tection [17], which necessarily include background learning, is diffi-

cult.  

This phenomenon distorts detection accuracy. Because the appear-

ance of whitecaps always changes, standardization is difficult. How-

ever, if the background blue color is removed and only the focus is 

on the outer shape of the white waves, detection accuracy can be im-

proved. 

These results determined that a segmentation model that could 

learn the irregular shape information of whitecaps would be suitable 

for white-wave detection, and various models were applied. 

3.2 Experimental Environment 

To comparatively analyze the performances of the segmentation  

(a) Ocean patches in A (b) Ocean patches in B 

(c) Whitecaps patches in A (d) Whitecaps patches in B 
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Table 1:  Composition of the dataset used for segmentation-

based whitecaps 

Item Images 

Train 714 
Test 92 

Validation 214 

models, data acquisition and experimental environments were con-

figured as follows: 

Table 1 lists the composition of the dataset used for segmentation-

based whitecaps. We divided the drone video into 714 learning im-

ages, 92 test images, and 214 validation images for use as a learning 

and performance detection dataset. A dataset was constructed using 

the correct answer data for each image.  

To acquire the data, the drone used 0000 and filmed near the Na-

tional Korea Maritime and Ocean University drone airfield, which is 

a nationally designated drone airspace. A GPU (NVIDIA A100 80 

GB PCle × 1) was used for AI training and testing of the whitecap 

detection model. 

3.3 Selection of Experimental Segmentation Models 

We selected four instance segmentation models, rather than detec-

tion models, through experiments on the characteristics of white-

caps. Figure 4 presents a systematic table of instance segmentation 

models. We conducted experiments by selecting representative mod-

els for each category of instance segmentation models to evaluate the 

whitecap detection performance of the instance segmentation mod-

els. However, the bottom-up method was excluded from these ex-

periments. Because the bottom-up method works well when regular 

features are clear, applying the method to detect whitecaps, which 

are irregular objects, is difficult. 

Figure 4: Systematic table of instance segmentation models 

     Mask R-CNN, a representative instance segmentation model of 

the R-CNN series, exhibits high detection performance and fast de-

tection speed. This model can perform detailed segmentation of can-

didate regions with a Region Proposal Network (RPN) by using an 

anchor. Furthermore, the model can be used to perform detailed ob-

ject detection because the model can perform multiple tasks, includ-

ing object detection, bounding box regression, and segmentation 

mask prediction simultaneously. Therefore, the model is suitable for 

small-sized whitecap detection because of its high detection perfor-

mance for small objects. Furthermore, the Region of Interest align-

ment (RoIAlign) proposed in the Mask R-CNN model allows for a 

precise extraction of object boundaries and enhances adaptability to 

changes in the object size. These advantages can be used for white-

cap detection because the model is well suited for detecting complex 

whitecap regions. Furthermore, because of the wide coverage of 

drone cameras, objects of varying sizes are captured depending on 

the distance. The ability of the model to handle such scale variability 

renders the model suitable for experimental models. 

TensorMask, the proposed model for performing dense segmen-

tation, represents masks as high-dimensional tensors that can effec-

tively segment objects such as whitecaps, which are difficult to detect 

because of overlapping objects, unclear outlines, or unclear shapes. 

Furthermore, Tensormask’s dense sliding-window approach can be 

used to predict masks across the entire image area, rendering the 

model suitable for whitecap detection through light features mixed 

with the background over a large area. 

    CenterMask is a segmentation model based on the FCOS detector. 

Because FCOS is a pixel-wise prediction of objects, FCOS can ef-

fectively separate complex backgrounds from objects.  

Therefore, when the background is unstable, as in the case of the

ocean, it can be effective in separating the background from objects. 

Furthermore, the model introduces SAG-Mask for segmenting the 

candidate regions extracted by the detector. In the segmentation pro-

cess, spatial attention was introduced to emphasize the characteristics 

of the objects in the region. Therefore, this spatial attention method 

is suitable for cases in which separating the background and object, 

such as whitecaps, is difficult. 

Finally, unlike existing instance-segmentation models, CondInst 

is an FCN structure that does not generate an RoI. which is the de-

tection result of the segmentation model. Because whitecaps have 

large irregularities in size and ratio, whitecap detection may not be 

possible if they do not fit the size and ratio of an anchor box of a 

prespecified size. Therefore, the structure of CondInst, which does 

not generate an RoI, is suitable for whitecap detection. 
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4. Experimental results

4.1 Experiment Result 

We analyzed a suitable white-wave detection segmentation model 

based on the characteristics and results of the previously selected 

models. The whitecap detection performance of the model was eval-

uated by dividing it into the mean average precision (mAP), AP50, 

and AP75. Table 2 lists the criteria for classifying object sizes in 

COCO. Because the evaluation criteria for the white waves of vari-

ous sizes differ depending on their sizes, the performance was ana-

lyzed by classifying them into small, medium, and large objects by 

applying the classification criteria of COCO. 

Tables 3 and 4 present the box and segmentation AP results for 

each model, respectively. In the case of the Mask R-CNN model, un-

like other models that exhibit differences in detection performance 

by item in terms of detection accuracy by the object size,  

 APs, APm, and APl consistently exhibited high performance. The 

small whitecaps exhibit clear characteristics in small areas, and with 

the increase in the size, the whitecap boundary is not clear, resulting 

in considerable interference from the background. Therefore, Mask 

R-CNN and CenterMask2, which consistently recorded high perfor-

mances by size, were models that could evenly respond to both char-

acteristics. For large whitecaps, boundaries are complex and ambig-

uous. 

Therefore, the CondInst model, including CenterMask2, can ef-

fectively detect objects with such characteristics. FCOS, an anchor-

free detection model, was used to investigate the cause for this phe-

nomenon. Unlike anchor methods such as Mask R-CNN, the FCOS 

model does not create an area in the form of a box, but determines 

the center point and subsequently estimates the area of the object 

from the center point. Therefore, this method is effective for detect-

ing objects such as large white waves, where accurately defining the 

object range is difficult. 

Figure 5 depicts an example of the application of the results of the 

four experimental models. (a) Visualization of the learning results of 

the Mask R-NN model. As presented in Tables 3 and 4, white wave 

detection performed using photographs achieved detection perfor-

mance, including small object detection. (b) is an image showing the 

application results of the TensorMask model. In the case of the Ten-

sorMask model, the detection and segmentation performance for 

small objects was poor, and the results were reflected in the visu-

alization photographs. In this model, detection of small white 

waves is difficult. By contrast, large object detection achieved 

high detection performance, and segmentation from the back-

ground was performed well. 

(c) Visualization of the application results of the Centermask2 

model. Centermask2 revealed the highest overall detection perfor-

mance, with Mask R-CNN. The visualization results also revealed 

that detection was performed evenly from small to large white 

waves. 

Here, (d) is a visualization of the application result of the CondInst 

Similar to the TensorMask model, the CondInst model did not per-

form well in detecting small objects. However, the model could de-

tect large white waves accurately. 

Table 2: Classification criteria by the object size in COCO 

Item Scales (Pixels) 

Small area < 322 

Medium 322 < area < 962 

Large  area > 962 

Table 4:  Instance segmentation and detection performance: Segmentation AP 

Models mAP AP50 AP75 APs APm APl

Mask R-CNN 41.0 77.2 36.8 25.7 42.6 59.5 
Tensor Mask 30.9 71.4 19.4 9.4 34.8 62.2 
CenterMask 42.0 79.7 38.5 23.8 42.9 60.3 

CondInst 36.6 76.1 29.0 13.5 38.8 59.7 

Table 3:  Instance segmentation and detection performance: Bounding box AP 

Models mAP AP50 AP75 APs APm APl

Mask R-CNN 46.9 77.1 49.3 46.5 46.1 58.1 
Tensor Mask 44.9 78.4 45.9 37.3 45.5 60.4 
CenterMask 45.7 75.1 48.7 43.0 46.4 62.5 

CondInst 46.3 73.7 50.0 42.4 47.3 61.7 
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Figure 5: Visualization images resulting from result of the segmen-

tation model 

In terms of overall performance indicators, Mask R-CNN re-

vealed the highest object detection performance, and CenterMask2 

revealed the highest segmentation performance. Therefore, we con-

cluded that the Mask R-CNN model is preferred when accurate ob-

ject detection performance is a priority, and the CenterMask2 model 

is preferred when region segmentation is a priority. 

Table 5 lists the detection speeds of the model. The inference time 

is the time required to extract results for one image, and the FPS is 

the number of images that can be processed per second. This value 

is calculated based on the average time of the entire inference time. 

The CondInst model achieved the fastest detection speed in the ex-

periment, whereas the Mask R-CNN model achieved the slowest de-

tection speed. 

5. Conclusion

In this study, we analyzed whitecap data and developed a suitable 

segmentation model to detect the white-wave phenomenon through 

instance segmentation. The experimental results revealed that white-

cap detection using the segmentation model performed well, but de-

tection was difficult in some situations, such as when the white wave 

size was very small or when the whitecaps were scattered and fea-

tures were faint. In a follow-up study, we will conduct additional re-

search to identify the characteristics of clear separation between the 

background and whitecaps by referring to the highly variable color 

of the sea through density-based clustering. 

The dataset used in this study was limited to specific conditions, 

such as time, location, and causes of whitecaps at the time of capture. 

Therefore, to address the highly variable ocean environment that 

fluctuates with weather and location, in the future, the dataset should 

be expanded to include whitecap data captured under various condi-

tions. By obtaining an expanded dataset categorized by the causes of 

whitecaps, detailed analysis based on the cause of whitecaps should 

be conducted. 
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Table 5: FPS and inference time per model 

Models FPS Inference time(ms) 

Mask R-CNN 8.33 0.12 
Tensor Mask 9.62 0.14 
CenterMask 9.83 0.12 

CondInst 10.71 0.11 

(a) Visualize the results of the Mask R-CNN model 

(b) Visualize the results of the TensorMask 

(c) Visualize the results of the CenterMask2 

(d) Visualize the results of the CondInst 
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