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Abstract: A simplified real-time state and cost prediction strategy is presented for the constrained predictive control of position in 

magnetic levitation systems which are characterized by fast and highly nonlinear dynamics. The proposed control scheme uses a trans-

formation of the input variable to feedback linearize the system and includes an accompanying control implementation strategy allow-

ing an accurate prediction of future states and outputs over relatively large time horizons. Further, to deal with the resulting non-convex 

constraint on the control input, the scheme employs a reformulation of the corresponding online optimization problem with a semidefi-

nite-relaxation-based convexification procedure leading to a simplified online optimization problem. The resulting predictive control 

strategy does not necessitate a very small sampling interval for accuracy and can be used to optimize the constrained evolution of the 

magnetic object’s position over a desired time horizon. Realistic nonlinear simulations show that the proposed scheme is effective and 

is able to achieve the desired control objectives. 
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1. Introduction 

Real-time optimization-based control, widely known as model 

predictive control (MPC), has, over the years, evolved as a suc-

cessful optimal control approach for a variety of multivariable 

dynamical systems [1]. Its ability to handle complex, multivaria-

ble systems with constrains in inputs and outputs comes from its 

strategy of computing, during each sampling interval, the se-

quence of control inputs over a finite time horizon by solving an 

optimization problem based on a discrete-time (DT) model of the 

system. Originally popular in the process industries for the con-

strained control of slow processes, which allow enough time to 

solve an optimization problem within each sampling interval [2], 

thanks to the advancements in computing speed, it is increasingly 

being successfully used, in its various forms [3]-[5], for control 

applications in most areas including those involving fast pro-

cesses (e.g., [6]-[7]).  

 The need to be able to solve a constrained optimization prob-

lem in real time makes MPC computationally challenging, par-

ticularly in situations involving nonlinear or/and uncertain sys-

tems with fast dynamics. For a nonlinear system, the correspond-

ing DT system model is typically approximated for a small 

sampling period and the resulting MPC problem is a non-convex 

optimization problem over a large sequence of input variables. 

The problem of reducing the online computational burden of 

nonlinear MPC has been extensively researched and the efforts 

have led to various computationally efficient approaches involv-

ing strategies such as gain scheduling [8], advanced-step compu-

ting [9], formulating the problem as a robust problem [10], using 

offline optimized, dynamically evolving control moves [11] and 

so on. Most alternative strategies simplify online computations 

with some compromise on the accuracy of the system model used 

for predictions and hence on the optimality of the solutions. Ap-

propriate MPC control strategies for nonlinear systems are 

largely subjective, depending on the nature of the nonlinearities 

and the control objectives.  

In this paper, we explore strategies for an appropriate DT dy-

namics modeling and a simplified but accurate prediction of the 

future state and output trajectories for predictive control of mag-

netic levitation systems which are marked by fast and highly non-

linear dynamics. Magnetic levitation systems or suspension sys-

tems involve the levitation of an object of magnetic material us-

ing an electromagnetic mechanism and these systems enable 
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contactless and noise free operation in many motion-related ap-

plications in areas such as rail transportation (high speed trains), 

energy storage systems, robotics, photo-lithography, contactless 

bearings, heart pumps wind turbines and so on [12]-[18]. While 

contactless operations using magnetic levitation systems are 

preferable over other alternatives, the challenges that these sys-

tems pose for the designer in the area of precise modeling, sens-

ing and control are also significant.   

For the precise position control in a magnetic levitation sys-

tem, several control strategies have been explored in the past sev-

eral years and the problem is actively being researched. Dynamic 

feedback linearization, linear quadratic control, adaptive control, 

sliding mode control, robust control, H∞-control and μ-synthe-

sis are some of the approaches proposed for this purpose in spe-

cific applications [14], [18]-[25]. Since the problem involves pre-

cise control requirements and constraints, MPC is also a promis-

ing control approach for this problem. Various MPC strategies 

that have been explored for this problem include standard finite-

horizon MPC [26], LMI-based robust MPC [27]-[28], nonlinear 

MPC [29], disturbance observer- based MPC [30], linear MPC 

over feedback linearized dynamics [31], deep-learning-based 

MPC [32] and so on.  

Because of fast nonlinear dynamics of the system, most MPC 

strategies for magnetic levitation systems use a prediction over a 

small time horizon, using very small sampling intervals and up-

dating the control input at a high frequency, usually using the 

strategy to compensate for disturbance inputs and load changes. 

Using a real-time optimization over a larger time horizon is com-

putationally demanding. This may prevent the MPC strategy 

from achieving its objective of achieving some kind of optimality 

over a certain time horizon. To address this issue, this paper is 

aimed at having a linear prediction model with an implementa-

tion strategy that significantly reduces the prediction inaccura-

cies associated with linearized models. For this, we consider a 

simple transformation of the input variable in the form of a sim-

ple feedback linearization that leads to a linear prediction model. 

However, the transformation results in a set of nonlinear, non-

convex constraints, and to deal with this problem, we propose a 

semidefinite relaxation for convexifying the constraints and thus 

formulate the MPC problem as a semidefinite programming 

(SDP) problem. While this convex formulation of the problem 

reduces the complexity of online computations associated with 

nonlinear MPC allowing us to make predictions over longer time 

horizons using piecewise constant control inputs over chosen 

sampling periods, accurate deterministic predictions also enable 

us to avoid the conservatism associated with robust approaches. 

The effectiveness of the proposed scheme is assessed with real-

istic nonlinear simulations involving various aspects of the con-

trol problem. 

2. Background and Preliminaries

2.1 Nonlinear MPC 

Consider a dynamical system described by the state and output 

equations 

�̇�(𝑡) = 𝑓 𝑥(𝑡), 𝑢(𝑡)  (1a) 

𝑦(𝑡) = ℎ 𝑥(𝑡)        (1b) 

where 𝑥(𝑡) ∈ ℝ  is the system state, 𝑢(𝑡) ∈ ℝ  is the control 

input and 𝑦(𝑡) ∈ ℝ   is the controlled output at time 𝑡 , and 

𝑓 (. , . ) and ℎ(. ) are possibly nonlinear algebraic functions. The 

MPC approach aims to drive the output 𝑦(𝑡) of the system to a 

chosen reference value 𝑟 by computing, and applying the control 

input 𝑢(𝑡) such that it minimizes a suitable cost function over a 

finite time horizon. A typical cost function considered for mini-

mization in real time is a quadratic cost function of the form. 

𝐽(𝑡0) = {(𝑥(𝑡) − 𝑥) 𝑄 (𝑥(𝑡) − 𝑥)
0

+ (𝑢(𝑡) − 𝑢) 𝑅 (𝑢(𝑡) − 𝑢)} 𝑑𝑡

+ ℓ 𝑥 𝑡 − 𝑥 (2) 

where 𝑄  is a positive semidefinite matrix, 𝑅  is a positive defi-

nite matrix, ℓ (. ) is a positive semidefinite function defining the 

terminal cost,  𝑡0 is the initial time, 𝑡  is the final time, and (𝑥, 𝑢) 

is an operating point of the system such that 

𝑓 (𝑥, 𝑢) = 0,   ℎ(𝑥) = 𝑟 

The state 𝑥(𝑡) and the input 𝑢(𝑡) are usually required to sat-

isfy certain constraints which may be expressed as 𝑥(𝑡) ∈ 𝕏 and 

𝑢(𝑡) ∈ 𝕌 where 𝕏 and 𝕌 are convex sets. 

Since the MPC approach envisages a real-time solution of the 

optimization problem, in practice, a DT approximation of the 

problem is considered choosing a suitable sampling period, 𝑇 

and the problem is solved every time step. Typically, the system 

dynamics in (1) are approximated by a DT description 

𝑥(𝑘 + 1) = 𝑓 𝑥(𝑘), 𝑢(𝑘) , 𝑦(𝑘) = ℎ 𝑥(𝑘)  (3) 
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where 𝑘 ∈ ℤ  denotes the discrete time step 0,1,2,…, 𝑥(𝑘) =

𝑥(𝑘𝑇) and 𝑦(𝑘) = 𝑦(𝑘𝑇) denote the values of the state and the 

output at the beginning of the time step 𝑘, 𝑢(𝑘) gives the control 

input to be applied during time step 𝑘, and 𝑓(. , . ) is the equiva-

lent or approximate state-update function. Further, assuming a 

uniform sampling, the cost function in (2) is approximated by a 

predicted cost function of the form 

𝐽(𝑘) = {(𝑥(𝑘 + 𝑖|𝑘) − 𝑥) 𝑄(𝑥(𝑘 + 𝑖|𝑘) − 𝑥)

1

0

 

+(𝑢(𝑘 + 𝑖|𝑘) − 𝑢) 𝑅(𝑢(𝑘 + 𝑖|𝑘) − 𝑢)} 

  + ℓ(𝑥(𝑘 + 𝑁|𝑘) − 𝑥) (4) 

where 𝑄 and 𝑅 are appropriately defined positive (semi) definite 

matrices, ℓ(. ) is a positive semidefinite function used to specify 

the terminal cost and 𝑁 is the horizon length. The subscript 𝑘 +

𝑖|𝑘 attached to a variable indicates the value of the variable at 

time 𝑘 + 𝑖 predicted at time 𝑘. 

The finite-horizon MPC optimization problem can be stated as 

minimize
( | ), 0,1,.. 1

𝐽(𝑘) (5a) 

subject to the constraints 

𝑥(𝑘|𝑘) = 𝑥(𝑘),

𝑥(𝑘+𝑖+1|𝑘) = 𝑓 𝑥(𝑘+𝑖|𝑘), 𝑢(𝑘+𝑖|𝑘) ,   𝑖 = 0,1, . . , 𝑁-1
𝑥(𝑘 + 𝑖|𝑘) ∈ 𝕏, 𝑖 = 1,2, . . , 𝑁
𝑢(𝑘 + 𝑖|𝑘) ∈ 𝕌, 𝑖 = 0,1, . . , 𝑁-1

(5b) 

The basic steps in an MPC scheme based on problem (5) are sum-

marized in Figure 1. 

Figure 1: Steps in a basic finite-horizon nonlinear MPC scheme 

If the system is a linear time-invariant system, the DT state 

equation in (3) can be obtained exactly, typically assuming a 

zero-order hold at the input, i.e., assuming 𝑢(𝑡) = 𝑢(𝑘)  for 

𝑘𝑇 ≤ 𝑡 < (𝑘 + 1)𝑇. Then, if the terminal cost ℓ(. ) is a convex 

quadratic function, problem (5) can be formulated as a convex 

quadratic programming (QP) problem and solved efficiently.  For 

a general nonlinear system, however, problem (5) is often a chal-

lenging problem, particularly for systems with fast dynamics. On 

the one hand, an exact DT model of system dynamics is usually 

not easy to obtain, and approximate models lead to inaccurate 

multi-step predictions of states. On the other hand, even with a 

relatively more accurate DT model, the state update equation is 

typically nonlinear and results in a non-convex optimization 

problem which is difficult to solve in real time except in cases 

with small horizon lengths. 

2.2 Magnetic Levitation Systems 

A magnetic levitation system comprises an object of mag-

netic material which is suspended in the air under the effect of an 

electromagnetic field created by a current-carrying coil.  A sche-

matic of the system is shown in Figure 2 where the vertical dis-

placement of the object, 𝑦 , increases as it moves downwards 

from the top. By varying the current in the coil, the vertical posi-

tion of the object can be varied. Given the desired vertical posi-

tion, 𝑟, the controller and the current drive generate the necessary 

current in the coil, based on the measured actual position (and 

speed) of the object obtained from the sensor (which is typically 

an optical sensor), to move the object to the desired position. 

Figure 2: Schematic diagram of a magnetic levitation system 

Nominally, the motion of the object is described by the differ-

ential equation 

𝑚�̈� = −𝜅�̇� + 𝑚𝑔 + 𝐹 (𝑦, 𝑖) 

where 𝑚 is the mass of the object, 𝜅 is the relevant coefficient of 

viscous friction and 𝑔 is the acceleration due to gravity. 𝐹 (𝑦, 𝑖) 

is the position-dependent force on the magnetic object due to the 

current in the coil and is given by  

𝐹 (𝑦, 𝑖) = −
𝐿𝑎𝑖2

2(𝑎 + 𝑦)2
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where 𝐿 and 𝑎 are relevant constants (see, e.g., [33, pp. 31-32]). 

Defining 𝑥1 = 𝑦  and 𝑥2 = �̇�  as state variables and 𝑢 = 𝑖  as 

the input, the corresponding state-space description of the system 

can be expressed as 

�̇� =

𝑥2

−
𝐿𝑎𝑢2

2𝑚(𝑎 + 𝑥1)2 −
𝜅

𝑚
𝑥2 + 𝑔

, 𝑦 = 𝑥1 (6) 

The state variables and the control input are typically required 

to satisfy the constraints  

𝑥 ∈ 𝕏, 𝕏 = { 𝑥 ∣∣ 0 ≤ 𝑥1 ≤ 𝑦 , −�̇� ≤ 𝑥2 ≤ �̇� } (7a) 

 𝑢 ∈ 𝕌, 𝕌 = { 𝑢 ∣∣  0 ≤ 𝑢 ≤ 𝑢 }                              (7b) 

A steady-state operating point (𝑥, 𝑢) of (6) has the form 

 𝑥 = 𝑦
0

, 𝑢 =
2𝑚𝑔

𝐿𝑎
(𝑎 + 𝑦) 

To formulate a reference-tracking MPC problem of the form 

(5) for system (6) under the constraints in (7), a DT approxima-

tion of the state equation in (6) is needed. One can either use the 

DT equivalent of the state equation in (6) linearized about the 

operating point associated with the reference point or a nonlinear 

DT approximation of the state equation in (6) for a small sam-

pling period by using the simple Euler or some Runge-Kutta 

(RK) method. 

While the use of a linearized model results in a QP-based MPC 

optimization problem, the approximation involved in the lineari-

zation leads to prediction errors for initial states not close to the 

operating point. The use of some approximate discretization, on 

the other hand, results in a nonlinear DT system model and hence 

a non-convex MPC optimization problem with a large horizon 

length, which can be computationally demanding. In the sequel, 

we explore an alternative approach to formulate the predictive 

control problem for system (6) with a linear DT approximation 

of the continuous-time state equation based on a transformation 

of the input variable.  

3. Simplified Prediction Strategies for Real-
time Nonlinear Predictive Control 

3.1 Discretization of the System Model 

Define a new variable 

𝑣 =
𝑢2

(𝑎 + 𝑥1)2

and rewrite system (6) as 

�̇� = 𝐴 𝑥 + 𝐵 𝑣 + 𝑐 , 𝑦 = 𝐶𝑥 (8) 

where 𝐴 =
0 1
0 −𝜅/𝑚

,  𝐵 =
0

−𝐿𝑎/2𝑚
,   𝑐 =

0
𝑔

 and 𝐶 =

[1   0]. The state equation in (8) is linear in the transformed input 

variable 𝑣. This transformation, however, has implications on the 

discretization of the model, on the form of the constraints and the 

cost function, and on the implementation of the control inputs. 

Assuming a constant 𝑣 throughout the sampling interval 𝑇, the 

DT counterpart of (8) is given by 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑣(𝑘) + 𝑐, 𝑦(𝑘) = 𝐶𝑥(𝑘) (9) 

where 𝐴 = 𝑒 , 𝐵 = ∫ 𝑒 𝑑𝜃0 𝐵  and 𝑐 = ∫ 𝑒 𝑑𝜃0 𝑐 . 

The assumption of a constant 𝑣 throughout the sampling period 

in this DT model means that the actual control input 𝑢 to be ap-

plied to the system is a function of the value of 𝑦(𝑡) within the 

period. This has implications on the control implementation 

which we shall discuss in the sequel. 

Lemma 1: Given a constant 𝑣, let the control input 𝑢(𝑡) in (6) 

for any time 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇) be defined as 

𝑢(𝑡) = √𝑣 𝑞(𝑡 − 𝑡0) + 𝑞1𝑒
( 0)

+ 𝑞2  (10) 

where 𝑞 =
1

2
(2𝑚𝑔 − 𝐿𝑎𝑣) , 𝑞1 = (𝑞 − 𝑥2(𝑡0))    and 𝑞2 =

𝑎 + 𝑥1(𝑡0) − 𝑞1. Then, the state of system (6) at time 𝑡0 + 𝑇 is 

𝑥(𝑡0 + 𝑇) = 𝐴𝑥(𝑡0) + 𝐵𝑣 + 𝑐 

Proof: This result can be easily seen with some algebraic exer-

cise. With 𝑣 defined as 𝑢2/(𝑎 + 𝑥1)2, the second component of

the state equation in (6) can be written as 

�̇�2 = −
𝜅

𝑚
𝑥2 −

𝐿𝑎

2𝑚
𝑣 + 𝑔

Assuming a constant 𝑣(𝑡) = 𝑣 for 𝑡 from 𝑡0 to 𝑡0 + 𝑇, we have, 

𝑥2(𝑡) = 𝑒
( 0)

𝑥2(𝑡0) + 𝑒
( )

−
𝐿𝑎

2𝑚
𝑣 + 𝑔 𝑑𝜏

0

= 𝑒
( 0)

𝑥2(𝑡0) + −
𝐿𝑎𝑣

2𝑚
+ 𝑔 𝑒

( )
𝑑𝜏

0

 

= 𝑒
( 0)

𝑥2(𝑡0) + −
𝐿𝑎

2𝑚
𝑣 + 𝑔

𝑚

𝜅
1

− 𝑒
( 0)  
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= 𝑞 + (𝑥2(𝑡0) − 𝑞) 𝑒
( 0) 

The first component of the state derivative in (6) can be ex-

pressed as 

�̇�1 = 𝑞 + (𝑥2(𝑡0) − 𝑞)𝑒
( 0) 

The value of 𝑥1(𝑡) for any 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] is given by 

𝑥1(𝑡) = 𝑥1(𝑡0) + 𝑞(𝑡 − 𝑡0) + (𝑥2(𝑡0) − 𝑞) 𝑒
( 0)

𝑑𝜏
0

 

= 𝑥1(𝑡0) + 𝑞(𝑡 − 𝑡0) + (𝑥2(𝑡0) − 𝑞)
𝑚

𝜅
1 − 𝑒

( 0)  

= 𝑞(𝑡 − 𝑡0) + 𝑞1𝑒
( 0)

+ 𝑥1(𝑡0) − 𝑞1

Hence, with 𝑢(𝑡) defined as in Equation (10), 𝑣(𝑡) is constant 

and equal to 𝑣 and hence the value of 𝑥(𝑡0 + 𝑇) directly follows 

from the DT equivalent (9) of model (8).       

Lemma 1 shows that if the control input 𝑢(𝑡) given by Equation 

(10) is implemented for 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇) with 𝑣 = 𝑣(𝑘) for each 

𝑡0 = 𝑘𝑇, 𝑘 = 0,1,2, …, then the controlled system is exactly de-

scribed by the DT LTI system model (9). So, under this assump-

tion, we can use model (9) to predict future states of the system. 

3.2 Constraints and the Cost Function 

Using (9) as the model of the system, we can easily express 

the sequence of the future states of the system at the sampling 

instants. Defining the vectors  

𝐱(𝑘) =

⎣
⎢
⎢
⎢
⎡

𝑥(𝑘|𝑘)

𝑥(𝑘 + 1|𝑘)

𝑥(𝑘 + 2|𝑘)
⋮

𝑥(𝑘 + 𝑁|𝑘)⎦
⎥
⎥
⎥
⎤

, 𝐯(𝑘) =

⎣
⎢
⎢
⎢
⎡

𝑣(𝑘|𝑘)

𝑣(𝑘 + 1|𝑘)
𝑣(𝑘 + 2|𝑘)

⋮
𝑣(𝑘 + 𝑁 − 1|𝑘)⎦

⎥
⎥
⎥
⎤

, 

we can express 𝐱(𝑘) as (see, e.g. [2]) 

𝐱(𝑘) = 𝒜𝑥(𝑘) + ℬ(𝐵) 𝐯(𝑘) +  𝐜 

where 

𝒜 =

⎣
⎢
⎢
⎢
⎡
𝐼

𝐴
𝐴2

⋮
𝐴 ⎦

⎥
⎥
⎥
⎤

,      ℬ(Φ) =

⎣
⎢
⎢
⎢
⎡

0 0 ⋯ 0
Φ 0 ⋯ 0

𝐴Φ Φ ⋯ 0
⋮ ⋮ ⋱ ⋮

𝐴 1Φ 𝐴 2Φ ⋯ Φ⎦
⎥
⎥
⎥
⎤

 

and c = ℬ(𝑐). Here, 𝐼  denotes an identity matrix of size 𝑛 . 

Constraints on state variables in (7a) can be imposed at the 

sampling instants and are collectively expressed as a linear con-

straint 

𝐌 𝑥(𝑘) + 𝐌 𝐯(𝑘) ≤ 𝐛 (11) 

where 𝐌  and 𝐌  are appropriately defined matrices. The con-

straint on the input variable 𝑢, expressed in terms of 𝑣, is, how-

ever, more complicated. Like 𝑦(𝑡), for a constant 𝑣(𝑘), 𝑢(𝑡) var-

ies within the sampling period and we can impose the constraint 

on it at the sampling instants, i.e., 

0 ≤ 𝑣(𝑘 + 𝑖|𝑘) 𝑎 + 𝑥1(𝑘 + 𝑖|𝑘)
2

≤ 𝑢2 , 

0 ≤ 𝑣(𝑘 + 𝑖|𝑘) 𝑎 + 𝑥1(𝑘 + 𝑖 + 1|𝑘)
2

≤ 𝑢2 ,
(12) 

for 𝑖 = 0,1, … , 𝑁 − 1. While the left-hand side constraints in (12) 

are equivalent to 

𝐯(𝑘) ≥ 0 (13) 

the right-hand side constraints are nonlinear and non-convex. De-

fine constant matrices 

𝐿1 = blkdiag(𝐼 ⊗ [1  0], [0  0]) 

𝐿2 = blkdiag([0  0], 𝐼 ⊗ [1  0]) 

where blkdiag(Δ1, Δ2) denotes a block diagonal matrix with di-

agonal blocks Δ1 and Δ2, and ⊗ denotes the Kronecker product. 

Further, defining a new matrix variable 

𝐕(𝑘) = 𝐯(𝑘)𝐯(𝑘)  (14) 

the constraints in (12) can be equivalently expressed as a pair of 

linear matrix inequality (LMI) constraints on 𝐯(𝑘) and 𝐕(𝑘) as 

𝑢2 𝐼 diag 𝐿1(𝒜𝑥(𝑘)+𝐜)+𝐚) 𝐯(𝑘) +𝐿1ℬ 𝐕(𝑘)

∗ diag 𝐯(𝑘)
≥ 0 

𝑢2 𝐼 diag 𝐿2(𝒜𝑥(𝑘)+𝐜)+𝐚) 𝐯(𝑘) +𝐿1ℬ 𝐕(𝑘)

∗ diag 𝐯(𝑘)
≥ 0 

(15) 

where diag(𝐯) for a vector 𝐯 represents the diagonal matrix with 

the elements of 𝐯 along its diagonal and diag(Δ) for a square ma-

trix Δ represents a diagonal matrix containing the diagonal ele-

ments of Δ .  Further, ℬ = ℬ(𝐵)  and 𝐚 = 𝑎𝟏  , where 𝟏   de-

notes an 𝑁 -dimensional vector with all 1’s. Matrix elements 

marked * in (15) complete the symmetric matrices. 

Next, we consider a cost function of the form (4) with 𝑄 > 0, 

a small 𝑅 ≥ 0 and ℓ(𝜙) = 𝜙 𝑃 𝜙 where 𝑃 ≥ 0. This cost func-

tion can be written as  

𝐽(𝑘) = (𝐱(𝑘) − 𝐱) 𝐐 (𝐱(𝑘) − 𝐱)

+ (𝐯(𝑘) − 𝐯) 𝐑 (𝐯(𝑘) − 𝐯) 
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where 𝐱 = 𝟏 1 ⊗ 𝑦
0

 , 𝐯 = 𝟏 ⊗ 𝑣  with 𝑣 = 2𝑚𝑔/𝐿𝑎 , 𝐐 =

𝐼 ⊗ 𝑄 0
0 𝑃

  and 𝐑 = 𝐼 ⊗ 𝑅 .  Further, omitting the constant 

terms, we can write 𝐽(𝑘) as 

𝐽(𝑘) = 𝐯(𝑘) ℬ𝑻𝐐ℬ + 𝐑 𝐯(𝑘)

+ 2 (𝒜𝑥(𝑘) +  𝐜 − 𝐱)𝑻𝐐ℬ − 𝐯 𝐑 𝐯(𝑘) 

= Trace ℬ𝑻𝐐ℬ + 𝐑 𝐕(𝑘)  

+2 (𝒜𝑥(𝑘) +  𝐜 − 𝐱)𝑻𝐐ℬ − 𝐯 𝐑 𝐯(𝑘) (16) 

The MPC optimization problem can now be stated as the mini-

mization of the cost 𝐽(𝑘)  in Equation (16) under constraints 

(11), (14) and (15). Condition (14), however, is a nonconvex 

equality constraint and is computationally difficult to handle. For 

the particular form of the cost function that we have, a potential 

alternative is to convexify it by replacing it with its semidefinite 

relaxation (see, e.g., [34]) given below:  

𝐕(𝑘) 𝐯(𝑘)

𝐯(𝑘) 1
≥ 0 (17) 

For the equality constraint (14) to be satisfied, the relaxed condi-

tion (17) should hold tightly.  

Lemma 2: If the minimization of the cost function 𝐽(𝑘) in (16) 

under constraints (11),  (15) and (17) results in an optimal solu-

tion such that the relaxed constraint (17) is tight (i.e., condition 

(14) holds), then then nonlinear constrains in (12) are satisfied by 

the predicted input and state sequences at all sampling instants.  

Proof: It is easy to see that the first set conditions in (12) can be 

equivalently written as 

𝑣(𝑘+𝑖|𝑘) 𝑎 + 𝑥1(𝑘+𝑖|𝑘)
2

≤ 𝑣(𝑘+𝑖|𝑘)𝑢2 , 𝑖 = 0, . . , 𝑁 - 1

This can be expressed in vector form as 

{[𝐚 + 𝐿1(𝒜𝑥(𝑘) + ℬ 𝐯(𝑘) +  𝐜)] ∘ 𝐯(𝑘)}2 ≤ 𝐯(𝑘)𝑢2

where ∘  denotes the Hadamard (elementwise) product and the 

squaring on the left side is to be understood in the elementwise 

sense. With the assumption that equality (14) holds true, this con-

dition can be written as 

diag 𝐿 (𝒜𝑥(𝑘)+𝐜)+𝐚) 𝐯(𝑘) +𝐿 ℬ 𝐕(𝑘)

≤ diag 𝐯(𝑘) 𝑢

which is equivalent to the first LMI in (15). Similarly, the second 

set of conditions in (12) can be equivalently expressed as the 

second LMI in (15).  Hence, the lemma follows. 

Remark 1: In the problem that we have, matrix 𝒜 and vector c 

have all positive elements and ℬ  has negative elements. The up-

per limit constraint on the control input becomes active when 

𝑥1(𝑘) is larger than 𝑥1 and the difference between them is signif-

icant. Under this situation, the minimization of cost 𝐽(𝑘)  in 

Equation (16) typically results in a solution for which the re-

laxed condition (17) is tight. 

3.3 Terminal Constraint and Stability 

In order to ensure that the output of the controlled system un-

der the control scheme based on the minimization of the MPC 

cost in Equation (16) accurately tracks the desired position, we 

introduce a terminal constraint in the MPC problem. The terminal 

constraint set is based on a carefully chosen terminal controller. 

An offline-optimized dynamic terminal controller such as the one 

discussed in [11] can offer a larger terminal set which reduces the 

online computational burden. In this work, however, we consider 

the standard static feedback terminal control law  

𝑣(𝑘) = 𝑣 + 𝐾(𝑥(𝑘) − 𝑥) (18) 

where 𝑣 = 𝑢
2
/(𝑎 + 𝑥1)2 = 2𝑚𝑔/𝐿𝑎, and 𝐾 is the optimal state-

feedback gain that minimizes an infinite-horizon linear quadratic 

cost, typically obtained as 

𝐾 = −(𝑅 + 𝐵 𝑃𝐵) 1𝐵 𝑃 (19a) 

where 𝑃 is the solution to the well-known algebraic Riccati equa-

tion and also satisfies the Lyapunov equation 

𝑃 − (𝐴 + 𝐵𝐾) 𝑃(𝐴 + 𝐵𝐾) − (𝑄 + 𝐾 𝑅𝐾) = 0 (19b) 

so that the infinite horizon terminal cost is represented by ℓ(𝜙) =

𝜙 𝑃 𝜙.  

The corresponding terminal constraint set that is computed 

should be invariant and constraint-admissible for the terminal 

controlled system, i.e., for a state of the terminal controlled sys-

tem starting in this set, the system constraints should be satisfied 

at all future times. Since the control law also depends on 𝑥, i.e., 

on 𝑥1, for terminal set computations, we consider an augmented 

state 𝑧 = (𝑥, 𝑥1), which follows the dynamics  

𝑧(𝑘 + 1) = Ψ 𝑧(𝑘) =
𝐴 + 𝐵𝐾 −𝐵𝐾

0 1
𝑧(𝑘)  (20) 
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where we have used the fact that 𝐵𝑣 = −𝑐. Further, since the up-

per bound on the transformed input variable 𝑣 , viz., 𝑢2 /

(𝑎 + 𝑥1)2, is dependent on the state of the system in a nonlinear

way, we consider a piecewise affine approximation of this upper 

bound for a number of segments of 𝑥1 ∈ [0, 𝑦 ]  as illustrated in 

Figure 3. We then compute a constraint-admissible invariant set 

for the state of system (20) for 𝑥1 in each of these segments while 

allowing 𝑥1 to extend beyond the segment under the affine ap-

proximation of the upper bound for 𝑣  for this segment. Let 

𝒮 , 𝑖 = 1, . . , 𝑚   be the nonoverlapping segments considered in 

[0, 𝑦 ] and, for each segment 𝑖, let 𝒵  be the constraint-admissi-

ble, invariant set for 𝑧(𝑘), satisfying 

Ψ𝒵 ⊆ 𝒵 (21) 

obtained for 𝑥1 ∈ 𝒮  and 𝑥1 in some 𝒮 ⊃ 𝒮  under the linearized 

constraint for this section. Note that with the linearized state-de-

pendent bound, the constraints on 𝑣(𝑘) can be expressed as lin-

ear constraints for each segment and the corresponding invariant 

set 𝒵   can be obtained using an iterative algorithm (see, e.g., 

[35]).   

Figure 3: Piece-wise affine approximation of 𝑥1-dependent up-

per bound on input variable 𝑣 

The MPC optimization problem including the terminal con-

straint based on the simplified prediction strategy for the mag-

netic levitation system can be stated as 

minimize
( | ), 0,1,.. 1

𝐽(𝑘) (22a) 

with 𝐽(𝑘)  defined in Equation (16), subject to the constraints 

(11), (15), (17) and  

(𝑥(𝑘 + 𝑁|𝑘), 𝑥1) = 𝒵  (22b) 

where 𝒵   is such that 𝑥1 ∈ 𝒮  . The MPC scheme based on 

problem (22) is summarized in Figure 4. 

Proposition 3: With the off-line computations carried out as out-

lined in the scheme of Figure 4, if the MPC optimization prob-

lem (22) is feasible for the initial state 𝑥(0) at time 𝑘 = 0, and 

providing that the constraint (17) holds tightly at every step 𝑘 ≥

0, the online steps outlined in the scheme of Figure 4 ensure that 

(a) the problem remains feasible at all time steps and the system 

constraints are satisfied at all discrete time instants, and (b) 

providing that (𝐴, 𝑄1/2) is observable, the state-input pair of the 

controlled system is asymptotically driven to the operating point 

(𝑥, 𝑢) and hence the output 𝑦(𝑘) asymptotically tracks the given 

reference 𝑟. 

Figure 4: Steps in an MPC scheme based on the simplified pre-

diction strategy 

Proof: If problem (22) is feasible with the initial state 𝑥(𝑘)  at 

time 𝑘, and an optimal solution is obtained with constraint (17) 

holding tightly, system constraints and the terminal constraint are 

satisfied by the predicted states and inputs at times 𝑘 + 𝑖, 𝑖 =

0, . . , 𝑁 − 1 and by the predicted terminal state 𝑥(𝑘 + 𝑁|𝑘). If the 

input 𝑢(𝑡) is applied to the system at times 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝑇) as 

mentioned in the scheme of Figure 4, the state 𝑥(𝑘 + 1) at time 

𝑘 + 1 is equal to the predicted state 𝑥(𝑘 + 𝑖|𝑘) and the new op-

timization problem at time 𝑘 + 1 is feasible with the input varia-

bles 𝑣(𝑘 + 𝑖|𝑘 + 1) = 𝑣∗(𝑘 + 𝑖|𝑘), 𝑖 = 1, . . , 𝑁 − 1 and 

𝑣(𝑘 + 𝑁|𝑘 + 1) = 𝑣 + 𝐾(𝑥(𝑘 + 𝑁|𝑘) − 𝑥) , and with the pre-

dicted terminal state satisfying (𝑥(𝑘 + 𝑁 + 1|𝑘 + 1), 𝑥) ∈ 𝒵  

because of the invariance property (20) of the set 𝒵 . Hence, if 

problem (22) is feasible at time 𝑘 = 0, part (a) of the proposition 

follows. 

Off-line (Before time 𝑘 = 0) 

 Find the DT system matrices 𝐴, 𝐵 and 𝑐. 

 Choose 𝑄, 𝑅 & 𝑁, and find 𝐾 & 𝑃 satisfying (19). 

 Choose 𝒮 , 𝑖 = 1, . . , 𝑚  and find 𝒵 , 𝑖 = 1, . . , 𝑚 . 

 Find (𝑥, 𝑢) for the given reference value 𝑟 and se-
lect 𝑖 such that 𝑥1 ∈ 𝒵 . 

Online (At each time 𝑘𝑇, 𝑘 ≥ 0) 

 Get a measurement of the state 𝑥(𝑘) 
 Solve optimization problem (22) to obtain optimal 

input variables 𝑣∗(𝑘 + 𝑖|𝑘),  𝑖 = 0, . . , 𝑁 − 1. 
 At times 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝑇), apply, to the plant, the 

control input 𝑢(𝑡) given by (10) with 𝑡0 = 𝑘𝑇 and 
𝑣 = 𝑣∗(𝑘|𝑘). 
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Next, to see part (b) of the proposition, note that since 𝑃 sat-

isfies the Lyapunov equation (19b), with the optimal state and 

input sequences predicted at time 𝑘 , which remain feasible at 

time 𝑘 + 1, we have 

  ℓ(𝑥(𝑘 + 𝑁|𝑘) − 𝑥) − ℓ(𝑥(𝑘 + 𝑁 + 1|𝑘) − 𝑥) 

 ≥ (𝑥(𝑘 + 𝑁|𝑘) − 𝑥) (𝑄 + 𝐾 𝑅𝐾)(𝑥(𝑘 + 𝑁|𝑘) − 𝑥) 

 = (𝑥(𝑘 + 𝑁|𝑘) − 𝑥) 𝑄(𝑥(𝑘 + 𝑁|𝑘) − 𝑥)

+ (𝑢(𝑘 + 𝑁|𝑘) − 𝑢) 𝑅(𝑢(𝑘 + 𝑁|𝑘) − 𝑢) 

and hence the cost monotonicity condition 

𝐽∗(𝑘 + 1) − 𝐽∗(𝑘) ≤ − 𝑥(𝑘) 𝑄𝑥(𝑘) + 𝑢∗(𝑘) 𝑅𝑢∗(𝑘)  

holds. This condition can be shown to ensure part (b) of the prop-

osition using standard arguments (see, e.g., [1], [36]).       

3.4 State Estimation and Control Implementation 

The online steps in the MPC scheme of Figure 4 assume that 

the state 𝑥(𝑘) can be measured exactly at every sampling instant 

and that the time varying control input 𝑢(𝑡) can be implemented 

according to Equation (10). In practice, however, the state may 

not be measured fully (e.g., only the position of the magnetic ob-

ject may be measured) or there may be errors in the measurement 

and the control input may be implemented in a more simplified 

form, using a constant or a linear approximation. The errors due 

to these factors can be incorporated in the system description (9) 

by adding a process disturbance term 𝑤(𝑘) in the state equation 

and a measurement noise term 𝜂(𝑘) in the output equation. 

Under certain assumptions on the process and measurement 

disturbances, the state may be estimated using a Kalman filter. 

Even in the absence of reliable stochastic models of disturbances, 

the method can be used together with some learning or tuning 

mechanism that estimates the disturbance covariances (e.g., 

[37]). However, we consider a receding horizon state estimation 

using weighted batch least squares [38] to estimate the state. 

Consider a backward state propagation model based on (9), viz., 

𝑥(𝑘 − 1) = 𝐴𝑥(𝑘) − 𝐴𝐵𝑣(𝑘 − 1) − 𝐴𝑐 

where 𝐴 = 𝐴 1. Using this model, the stacked vector of states at 

the current and the past 𝑁  time steps, i.e.,  

𝐱(𝑘) = [𝑥(𝑘)     𝑥(𝑘 − 1|𝑘)   ⋯      𝑥(𝑘 − 𝑁 |𝑘) ]  

 can be written as 

𝐱(𝑘) = 𝒜𝑥(𝑘) − ℬ 𝐴𝐵  𝐯(𝑘) − 𝐜 (23) 

where 𝒜 and ℬ are defined just like 𝒜 and ℬ  but with matrix 𝐴 

replaced by 𝐴, 𝐜 = ℬ 𝐴𝑐  and 

𝐯(𝑘) = [𝑣(𝑘 − 1)   ⋯      𝑣(𝑘 − 𝑁 )]  

So, the stacked vector of outputs based on 𝐱(𝑘) is given by 

𝐲(𝑘) = 𝒞𝒜𝑥(𝑘) − 𝒞ℬ 𝐴𝐵 𝐯(𝑘) − 𝒞𝐜 (24) 

where 𝒞 = 𝐼 1⨂𝐶. Defining the vector of measured outputs 

𝐲(𝑘) = [𝑦(𝑘)     𝑦(𝑘 − 1)   ⋯      𝑦(𝑘 − 𝑁 )]  

the error vector is 𝐞(𝑘) = 𝐲(𝑘) − 𝐲(𝑘).   A weighted least 

squares estimate of 𝑥(𝑘) that minimizes the weighted sum of er-

rors 𝐞(𝑘) 𝑊𝐞(𝑘), with a weight matrix 𝑊, is given by 

𝑥(𝑘) = ℳ 𝐲(𝑘) + 𝒞ℬ 𝐴𝐵 𝐯(𝑘) + 𝒞𝐜  

where ℳ = (𝒜 𝒞 𝑊 𝒞𝒜) 1𝒜 𝒞 𝑊. 

The presence of disturbances in the system dynamics model 

complicates the design of any controller, and some additional 

mechanism is usually adopted (e.g., [39]) to ensure robustness. 

In the MPC approach, a robust mechanism may be followed to 

guarantee the satisfaction of constraints in the presence of dis-

turbances. However, assuming noises of small magnitudes, and 

relying on the inherent robustness of the MPC approach, we use 

the prediction model based on the nominal dynamics (9) as dis-

cussed in Section 3.2. 

For the implementation of the control input, we consider two 

alternative approximations to the time varying input 𝑢(𝑡)  for 

time 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝑇) – a linear approximation of (10) given by 

𝑢(𝑡) = 𝑣∗(𝑘) 𝛽0 + 𝛽1(𝑡 − 𝑘𝑇) (25a) 

where 𝛽0 = 𝑞2 + 𝑞1𝑒 2 1 −
2

  and   𝛽1 = 𝑞 − 𝑞1 𝑒 2  , 

and a constant approximation based on the time-averaged value 

of 𝑦(𝑡) within the sampling period, given by 

𝑢(𝑡) = 𝑣∗(𝑘) 𝑞2 +
𝑞𝑇

2
+

𝑞1𝜅

𝑚𝑇
1 − 𝑒  

= 𝑣∗(𝑘) 𝑎 + Λ0 + Λx𝑥(𝑘) + Λ 𝑣∗(𝑘) (25b) 

where the values of the constant quantities Λ0, Λ  and Λ  are ob-

tained from the definitions of 𝑞 , 𝑞1  and 𝑞2 . When the constant 

approximation (25b) is used, the two constraints in (15) can be 

replaced by a single matrix inequality constraint with the left-

hand-side matrix having the off-diagonal block equal to 
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diag 𝐿 (𝒜𝑥(𝑘)+𝐜)+𝐚 + 𝐿0) 𝐯(𝑘) +(𝐿 ℬ + 𝐿 )𝐕(𝑘)  

where 𝐿 = 𝐼 ⨂Λ ,  𝐿 = 𝐼 ⨂Λ  and 𝐿0 = 𝟏𝑵Λ0. This version 

of the constraint applies to the constant control input that is actu-

ally applied to the system during each sampling period. 

Remark 2: In the analysis here, we have not incorporated the time 

delay in the implementation of the control action every time step 

due to the time spent in solving the MPC optimization problem. 

The effect of this time delay can be accounted for by either solv-

ing the optimization problem for the predicted future state of the 

system or by incorporating the delay in the discrete-time system 

matrices as mentioned in [2]. 

4. Simulations

4.1 Basic Details 

For the simulations in this section, we consider the values of 

the system parameters mentioned on the left side of Table 1.   

Table 1: System, constraint and cost parameters 

Parameter Value Parameter Value 

𝑚 0.1 kg 𝑦  0.1 m 

𝜅 0.001 Ns/m �̇� 0.5 m/s 

𝑔 9.81 m/s2 𝑢  10 A 

𝑎 0.05 m 𝑄 1 0
0 0.01

 

𝐿 0.01 H 𝑅 10 10

The limits considered in the constraints in (7) and the cost ma-

trices used in defining the cost 𝐽(𝑘) in Equation (16) are men-

tioned on the right side of Table 1. The terminal cost matrix 𝑃, 

the feedback gain 𝐾  and the corresponding terminal invariant 

sets are determined as mentioned in Section 3.3. We consider 

only two segments 𝒮1 = [0, 0.05] and 𝒮2 = [0.05, 0.1]  in [0, 0.1] 

and find the invariant sets 𝒵1 and 𝒵2 for system (20) with 𝑥1 in 

𝒮1  and 𝒮2 . The set 𝒵1  obtained for 𝑥1 ∈ [0, 0.06]  and 𝑇 = 0.04 s 

is shown in Figure 5. 

Figure 5: Terminal invariant set 𝒵1 obtained for system (20) 

with 𝑥1 ∈ [0, 0.06] and 𝑥1 ∈ [0, 0.05] 

4.2 Assessment of Prediction Accuracy 

We first assess the accuracy of the simplified multi-step pre-

dictions based on model (9) when linear and constant approxi-

mations (25a,b) of the optimal control inputs are applied to the 

plant. We consider the MPC optimization (22) for a target posi-

tion 𝑟 = 𝑥1 = 0.0025  with 𝑥(0) = (0.095,0)  and compare the 

predicted values of the state components with their actual values 

obtained when the inputs predicted at time 𝑘 = 0  are imple-

mented using the nonlinear relation (10) and using its linear (25a) 

and constant (25b) approximations within each sampling period. 

The actual values obtained using 𝑢(𝑡) as per (10) obviously co-

incide with the predicted values. The comparison results shown 

in Figure 6 for a sampling period 𝑇 = 0.04s indicate that the ac-

tual values in the rest two cases are close to the predicted values 

through the full prediction horizon. With a smaller sampling pe-

riod, the actual values remain further closer to the predicted 

Figure 6: Position and velocity components of the state based on an exact nonlinear implementation of the control input in (10), 

a linear approximation of the input (25a) and a constant approximation of the input (25b) for 𝑇 = 0.04 s. 
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values in both the cases. 

Figure 7 shows the magnitudes of the largest errors, 

𝑤 , , 𝑖 = 1,2  in the update of the state components in (9) for 

various values of the sampling interval 𝑇 when the control input 

is applied based on the approximations of (25a) and (25b). Note 

that, in this example, while the error in the update of 𝑥1 is smaller 

when the linear approximation is used, the error in the update of 

𝑥2 is smaller when the constant approximation is used. 

Figure 7: Largest modelling error component magnitudes in the 

state equation with linear and constant approximations of 𝑢(𝑡).  

Figure 8: Predicted optimal state component trajectories ob-

tained at 𝑘 = 0 based on the linearized model about a target op-

erating point, and the actual trajectories obtained with the same 

input sequence 

We also assess how the accuracy of the prediction approach 

explored in this paper compares with the accuracy of the predic-

tions using the usual linearized model. We consider 𝑟 = 0.0025 

and linearize the nonlinear model about the operating point with 

𝑥 = (0.0025,0). We discretize the linearized model for 𝑇 = 0.04s 

and consider a finite horizon MPC problem with 𝑁 = 20 for an 

initial state (0.095,0). In Figure 8, predicted trajectories of the 

state components based on the optimal input sequence obtained 

at time 𝑘 = 0 are compared with the actual trajectories obtained 

by applying this input sequence to the nonlinear system. It can be 

observed that the predictions are significantly off from actual val-

ues beyond a few steps. Note that while a receding horizon con-

trol based on these inaccurate predictions may still give a satis-

factory control performance, there is no guarantee of stability and 

accurate set-point tracking with an MPC scheme based on these 

predictions. 

4.3 Predictive Control Performance 

Next, we evaluate the setpoint tracking performance with the 

overall MPC scheme outlined in Figure 4. Considering 𝑥(0) =

(0,0), we first choose 𝑟 = 0.095 for up to 0.8s and then change 

the reference value to 𝑟 = 0.0025. In the simulations, we con-

sider, 𝑇 = 0.04s and 𝑁 = 10. Assuming that only the position is 

measured, we consider a zero-mean Gaussian sensor noise of 

standard deviation 𝜎 = 10 4 in the simulations, and to estimate

the state, use a receding horizon state estimator with 𝑁 = 5 and 

𝑥(0) = (0,0). A diagonal weight matrix 𝑊 is chosen with diago-

nal elements 𝑊 = 1/𝑒 ,
2    where 𝑒 ,   is an estimated upper

bound of the magnitude of 𝑒(𝑘 − 𝑖|𝑘) based partly on the obser-

vation in Figure 7 for the constant approximation (25b) and on 

an assumption that |𝜂(𝑘)| ≤ 2𝜎  most of the times. 

Figure 9: Actual and estimated position and velocity trajectories of the controlled system under the MPC scheme of Figure 4 for 

𝑥(0) = (0,0) and 𝑟 = 0.095 for up to time 0.8s and 𝑟 = 0.0025 from time 0.8s. Initial estimated state 𝑥(0) = (0,0). 
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Figure 9 shows the actual and estimated trajectories of the 

state components under MPC when the control input 𝑢(𝑡) is im-

plemented using the constant approximation (25b). With a small 

sensor noise, the estimated state components are sufficiently 

close to the actual state components. Note that the position 𝑥1 

reaches and remains close to the relevant set point before any 

change in the reference input. Also, the constraints on the state 

components are always satisfied. 

Figure 10 shows the actual control inputs applied to the sys-

tem.  The piecewise constant input trajectory of Figure 10 (left) 

pertains to the case when (25b) is used to approximate the time-

varying control input whereas the piecewise affine input trajec-

tory of Figure 10 (right) is obtained when (25a) is used. 

Note that when (25b) is to be used, the two constraints in (15) 

are replaced by a single constraint as mentioned in Section 3.4. 

The input trajectories in both the cases satisfy the input con-

straints. 

4.4 Computational Requirements 

The reformulated MPC optimization problem is convex and is 

solved as an SDP problem. The computational requirement for 

an SDP problem is typically higher than that for a QP problem 

which arises in the case of a linearized system with linear con-

straints. Nevertheless, the convex reformulation provides a com-

putationally efficient alternative to solve the original nonlinear 

MPC problem which is non-convex. Simulations in this section 

are carried out using the CSDP solver in MATLAB 2017b in a 

machine with 1.8GHz Intel i7 processor and 16 GB RAM. The 

mean computation times needed by the solver at each step in the 

simulations discussed in the previous subsection (with the input 

approximation of (25b)) are listed for three horizon lengths in 

Table 2. 

These computation times are small for a small 𝑁 but grow with 

increasing values of 𝑁.  Since the sampling interval considered 

for the problem is 𝑇 = 0.04s, if a large horizon length is needed 

for the problem, computational delay may need to be handled ei-

ther with a more efficient solver for the specific structure of the 

problem or accounted for in the DT model of the system as men-

tioned earlier in Remark 2. 

Table 2: Computation times (Solver) 

𝑁 = 5 𝑁 = 10 𝑁 = 15 

0.009s 0.016s 0.033 s 

5. Conclusion

A  real-time MPC scheme with a simplified prediction strategy 

was explored for the control of a nonlinear magnetic suspension 

system. The prediction strategy involves a linearizing transfor-

mation of the input variable together with an accurate method of 

control input implementation, and a reformulation of the result-

ing constrained MPC optimization problem as a convex SDP 

problem using semidefinite relaxation. Simulation results 

demonstrate the effectiveness of the proposed scheme for non-

trivial sampling periods and prediction horizon. 
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