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Abstract: A computationally efficient nonlinear model predictive control (MPC) scheme is presented for the problem of trajectory 

tracking control, in the 3D space, of autonomous underwater vehicles (AUVs) under constrained speeds and thruster forces, and pos-

sibly in the presence of disturbances and actuator limitations. The proposed scheme considers AUV dynamics with four degrees of 

maneuverability and uses an accurate modeling of the discrete-time dynamics of the system using a suitable neural network that enables 

efficient state propagations and MPC cost gradient computations owing to the parallel computation structure of the network, thereby 

allowing a more efficient solution of the constrained nonlinear MPC optimization problem using a sequential quadratic programming-

based approach. This also paves way for MPC optimizations over larger time horizons which may be necessary under certain situations. 

The effectiveness of the proposed scheme is verified with extensive simulations covering various scenarios including the ones that deal 

with the presence of random and non-random time-varying disturbances and, additionally, the condition of underactuation of the vehicle 

due to the failure of an actuator. 

Keywords: Trajectory tracking, Nonlinear model predictive control, Autonomous underwater vehicles, Underactuated AUV,  Com-

putationally efficient NMPC 

 

 

1. Introduction 

Over the past several years, there has been an increasing aca-

demic, technological and commercial interest in unmanned au-

tonomous systems operating in various environments – on 

ground and water, in air and space and under the sea [1]. An au-

tonomous underwater vehicle (AUV) is a computer controlled 

robotic vehicle equipped with a propulsion system enabling its 

maneuvering in the three-dimensional (3D) space under the sea. 

Like other unmanned autonomous systems, AUVs have exten-

sive scientific, military and commercial applications such as 

mapping and imaging of underwater landscapes, deep-sea explo-

ration of marine life, inspection of underwater infrastructure, de-

tection and clearance of pollutants and mines, undersea search 

and rescue and so on (see, e.g., [2]-[5]). Behind the successful 

design and operation of AUVs are various enabling technologies 

in the field of sensing, propulsion, communications, guidance, 

navigation and control [6].  

 Target or trajectory tracking ability is very crucial for most 

AUV applications and this requires sophisticated navigation and 

control schemes since an AUV and the environment that it oper-

ates in are characterized by high-dimensional nonlinear dynam-

ics, often uncertain, constrained and underactuated, and usually 

unpredictable oceanic disturbances. Research on reliable control 

of AUVs is extensive and continuing [7]. A survey of early works 

on AUV control can be found in [8]. Traditional control design 

for AUVs includes various analytical design approaches employ-

ing nonlinear feedback [9], gain-scheduled or parameterized lin-

ear feedback [10], input-output feedback linearization [11], and 

so on. To deal with control challenges owing to the highly non-

linear dynamics involving parameter uncertainties and disturb-

ances, techniques such as sliding mode control [12] and adaptive 

control [13] have been tried and continue to be explored [14]-

[16].  Alternative approaches that have been extensively explored 

include the more computation-oriented techniques such as those 

using fuzzy logic [17], and neural networks [18]-[19].  

Control approaches explored in the works mentioned above do 

not directly deal with state and input constraints whose satisfac-

tion is usually crucial in trajectory tracking applications. Model 
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predictive control (MPC) is a promising computation-oriented 

control approach that handles constraints in a systematic way 

[20]. This approach is based on solving an open-loop control op-

timization problem online in real time and, with the advance-

ments in computing hardware speed, the technology has become 

applicable for an increasing variety of linear and nonlinear con-

trol applications including trajectory planning and tracking ap-

plications. Theoretical analysis of the method has also matured 

over the years [21]. MPC has been used for trajectory tracking 

control of marine vehicles in several earlier works [22]-[28]. 

Nonlinear MPC is used together with an unscented Kalman filter 

for positioning of ships in [22]. In [23], the authors present a 

combination of MPC and genetic algorithms to achieve dynamic 

trajectory tracking.  Similarly, a Lyapunov-based MPC is ex-

plored for robust trajectory tracking of AUVs in [24]. An event-

triggered nonlinear MPC is presented in [25] for trajectory track-

ing by an underactuated ship with reduced computational burden 

and a similar approach is used for AUVs in the presence of dis-

turbances in [26]. In these schemes, the MPC optimization is car-

ried out only when the vehicle’s deviation from the desired state 

is outside a chosen bound. In [27], a robust nonlinear MPC is 

designed to achieve robust trajectory tracking of underactuated 

AUVs in the presence of disturbance inputs.  

While MPC offers a remarkable control performance, it is 

computationally demanding, which is particularly significant for 

nonlinear systems. So, a fast and reliable algorithm to solve the 

nonlinear MPC problem is always a necessity [28]. Since MPC 

is primarily envisaged in the discrete-time (DT) domain, an ac-

curate DT model of the system is required, and is not readily ob-

tained for a nonlinear system. Most MPC schemes use DT mod-

els obtained using a simple Euler or Runge-Kutta (RK)-based 

discretization, which requires a very small sampling period to be 

considered. This limits the horizon length over which the MPC 

optimization can be carried out in real time, and it can be a draw-

back in certain situations in trajectory tracking.  

In this work, we present a trajectory tracking nonlinear MPC 

scheme that is based on an accurate modeling of the DT dynam-

ics of the AUV and therefore allows an MPC optimization over a 

larger time horizon. In particular, we consider an AUV with four 

degrees of maneuverability and model its DT dynamics for a suit-

able sampling time with a feedforward neural network (NN). A 

network with a single hidden layer is chosen so that nested or 

sequential computations can be avoided during cost gradient 

computations. Such a model can be obtained for sampling inter-

vals significantly larger than those that can be used with the 

approximate methods. Following [29], we present a sequential 

quadratic programming (sQP) algorithm to solve the resulting 

NMPC problem for trajectory tracking. The sQP algorithm en-

sures feasibility after each iteration and uses a simple trust region 

constraint to achieve convergence.  

We verify the performance of the proposed tracking control 

scheme through extensive nonlinear simulations for an AUV mis-

sion in ideal and non-ideal scenarios. Non-ideal conditions in-

clude the presence of external disturbances and/or the failure of 

the control component along the transverse direction. Simula-

tions show the effectiveness of the proposed approach. 

Notations: 𝐼  denotes an identity matrix of size 𝑛, 𝟎 ×  denotes 

an 𝑚 × 𝑛 matrix of all zeros, and 𝟏  represents a 𝑛-dimensional 

vector of all ones. If any subscript is omitted, the dimension 

should be clear from the context. For a vector 𝐯, diag(𝐯) repre-

sents a diagonal matrix with the elements of 𝐯 along the diagonal, 

and with entities Δ1, Δ2, … , diag(Δ1, Δ2, … )  represents a (block) 

diagonal matrix with Δ1, Δ2, … along the diagonal. For a vector 

𝐯, ‖𝐯‖𝑸
𝟐  with a symmetric matrix 𝑄 represents the quadratic form 

𝐯 𝑄𝐯. For a DT signal 𝑥(𝑘), 𝑥(𝑘 + 𝑖|𝑘) denotes the future sig-

nal value 𝑥(𝑘 + 𝑖) predicted at time 𝑘. 

2. System Description

2.1 Mathematical Model of AUV Motion 

Figure 1: Coordinate frames for describing AUV motion 

The motion of an AUV, like that of any marine vehicle, is con-

veniently described in 6 degrees of freedom (DOF) with its pose 

specified by its position 𝐩 = (𝑥, 𝑦, 𝑧)  and its orientation 𝛉 =

(𝜙, 𝜃, 𝜓) (in terms of Euler angles) in an Earth-fixed coordinate 

frame XE-YE-ZE and its linear and angular velocities 𝐯 =

(𝑢, 𝑣, 𝑤)  and 𝛚 = (𝑝, 𝑞, 𝑟)  specified in a body-fixed reference 
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frame XB-YB-ZB as illustrated in Figure 1. The origin O of the 

body-fixed frame is chosen at the vehicle’s center of gravity (CG) 

and its axes are chosen to coincide with the three principal axes 

of inertia – longitudinal, transverse and normal. So, the linear ve-

locity components 𝑢, 𝑣  and 𝑤  correspond to surge, sway and 

heave speeds and the angular velocity components 𝑝, 𝑞  and 𝑟 

correspond to roll, pitch and yaw speeds.  

The kinematic relationship between the pose vectors and the 

velocity vectors are given by 

�̇� = 𝑱𝟏(𝛉)𝐯, �̇� = 𝑱𝟐(𝛉)𝛚 

where 𝑱𝟏(𝛉)  and 𝑱𝟐(𝛉)  are 3 × 3  transformation matrices with 

elements depending on 𝜙, 𝜃, 𝜓 (see, e.g., [30] for the details).  

In this paper, we consider underwater vehicles equipped with 

metacentric restoring forces preventing roll and pitch motions so 

that the roll and pitch angles 𝜙 and 𝜃 and the angular speeds 𝑝 

and 𝑞 are negligible and close to zero. Under this assumption, the 

reduced-order kinematic relationship is described by  

�̇� = 𝑱𝟏(𝜓)𝐯 =
cos 𝜓 −sin 𝜓 0
sin 𝜓    cos 𝜓 0
0 0 1

𝐯,   �̇� = 𝑟 (1) 

Further, the dynamics of the vehicle are specified in terms of the 

combined velocity vector 𝛖 = (𝐯, 𝑟) by the relationship 

𝑴�̇� + 𝑪(𝛖)𝛖 + 𝑫(𝛖)𝛖 + 𝐠 = 𝛕 + 𝐝 (2) 

where 𝑴 is the matrix of mass/inertia components (including the 

added mass/inertia), 𝑪(𝛖) is the matrix of Coriolis terms (includ-

ing that of added mass/inertia), 𝑫(𝛖) is the hydrodynamic damp-

ing matrix, 𝒈 is the vector of gravitational forces and moments, 

𝛕 is the control input vector comprising forces and torques and 𝐝 

is the vector of disturbance forces/torques, mainly due to water 

currents. Assuming the AUV body to be symmetric about the 𝑥-

𝑦 and 𝑥-𝑧 planes, and that it has a slightly positive buoyancy, we 

have, 

𝑴 = diag(𝑚 , 𝑚 , 𝑚 , 𝐼 ), 

𝑪(𝛖) =

0 0 0  −𝑚 𝑣
0 0 0  𝑚 𝑢
0 0 0 0

𝑚 𝑣 −𝑚 𝑢 0 0

 

𝑫(𝝊) = −diag(𝑋 , 𝑌 , 𝑍 , 𝑁 ) 

− diag 𝑋 | ||𝑢|, 𝑌 | ||𝑣|, 𝑍 | ||𝑤|, 𝑁 | ||𝑟|  

𝐠 = [0    0    𝐵 − 𝑊    0]   

𝛕 = [𝜏     𝜏     𝜏     𝜏 ]  

𝐝 = [𝑑     𝑑     𝑑     𝑑 ]  

where 𝑊 and 𝐵 are the weight and the buoyancy of the vehicle, 

and, 𝑚 , 𝑚 , 𝑚 , 𝐼   are mass/inertia terms (including added 

mass/inertia), 𝑋 , 𝑌 , 𝑍 , 𝑁   and 𝑋 | |, 𝑌 | |, 𝑍 | |, 𝑁 | | are hy-

drodynamic damping terms, 𝜏 , 𝜏 , 𝜏 , 𝜏   are the control 

forces/torque generated by the thrusters and 𝑑 , 𝑑 , 𝑑 , 𝑑   are 

disturbance forces/torque effective along/about the surge, sway, 

heave and yaw directions. 

Thus, combining Equations (1) and (2), we can write the 

mathematical description of the AUV motion in the 3D space in 

the form of the following nonlinear state-space model 

�̇� = 𝒇(𝐱, 𝐮, 𝐝),   𝐲 = 𝐶 𝐱 (3) 

where 𝐱 = [𝑥  𝑦  𝑧  𝜓  𝑢  𝑣  𝑤  𝑟] ∈ ℝ8  is the state vector, 𝐮 =

𝛕 ∈ ℝ4 is the control input vector, 𝐝 ∈ ℝ4 is the disturbance in-

put vector, and  

𝒇(𝐱, 𝐮, 𝐝)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑢 cos 𝜓 − 𝑣 sin 𝜓
𝑢 sin 𝜓 + 𝑣 cos 𝜓

𝑤
𝑟

1
𝑚

(𝑚 𝑣𝑟 + (𝑋 + 𝑋 | ||𝑢|)𝑢 + 𝜏 + 𝑑 ) 

1
𝑚

(−𝑚 𝑢𝑟 + (𝑌 + 𝑌 | ||𝑣|)𝑣 + 𝜏 + 𝑑 )

1
𝑚

(𝑊 − 𝐵 + (𝑍 + 𝑍 | ||𝑤|)𝑤 + 𝜏 + 𝑑 )

1
𝐼

((𝑚 − 𝑚 )𝑢𝑣 + (𝑁 + 𝑁 | ||𝑟|)𝑟 + 𝜏 + 𝑑 )
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Further, the output vector y = C x = [𝑥  𝑦  𝑧  𝜓] ∈ ℝ4 so that C 

= [𝐼4     𝟎4×4].  

Remark 1: The motion of an AVU described by (3) has 4 DOF 

and is supported by control inputs along the 4 directions. The 

AUV can still be maneuvered if the sway input component 𝜏  is 

unavailable or the corresponding actuator is faulty. A vehicle in 

such a situation is considered to be underactuated.  Several works 

on AUV trajectory tracking control have focused on underactu-

ated AUVs (e.g., [27])   

2.2 Problem Description 

We wish to control the motion of an AUV for missions that 

require tracking a constant target point or tracking a specified 

time-varying reference trajectory in some optimal way while sat-

isfying all requirements including system constraints.    

2.2.1 System Constraints 
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The motion of an AUV is usually constrained by limitations on 

the values of control inputs and state components; that is, the lim-

its on the thruster forces and torque that can be generated and the 

limits on the velocities that are tolerated in each direction. Con-

sidering that the control input components and the velocity com-

ponents are bounded in their absolute values, we express the con-

straints in collective forms mentioned below: 

𝐮 = 𝛕 ∈ 𝕌 = 𝐮 ∈ ℝ4
∣
∣
∣ |𝑢1|≤ �̂� , |𝑢2| ≤ �̂� ,

|𝑢3|≤ �̂� , |𝑢4| ≤ �̂�
(4a) 

𝐱 ∈ 𝕏 = 𝐱 ∈ ℝ8
∣
∣
∣ |𝑥5|≤ 𝑢, |𝑥6| ≤ 𝑣,

|𝑥7|≤ 𝑤, |𝑥8| ≤ �̂�
(4b) 

Constraints on the position components of the state may exist 

but they mostly depend on the mission and the environment and 

may be specified dynamically during the mission. 

2.2.2 Target Reference Point or Trajectory 

When a target reference point is given, it is the desired final 

position 𝐩  which the vehicle is supposed to eventually reach. 

The reference trajectory and the final time may not be specified 

in this scenario.  

When a target reference trajectory is given, it is specified in 

the form of a time-varying position vector 𝐩 (𝑡) =

𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡)  which is a smooth and continuous function 

of time. The other components of the desired state 𝐱 (𝑡) can be 

readily obtained by first finding 𝜓 (𝑡) = atan
( )

( )
,  and then 

finding the derivatives: 𝐯 (𝑡) = 𝑱𝟏
1(𝜓)�̇� (𝑡)  and  𝑟 (𝑡) =

�̇� (𝑡). 

Here, we assume that the target reference point or reference 

trajectory is feasible in the sense that it can be tracked by the 

AUV while satisfying all constraints. This is theoretically so if 

the desired position trajectory is a part of a feasible solution to 

the system model (3) satisfying all constraints. 

2.2.3 Control Objectives 

Given a constant target position 𝐩 (𝑡) = 𝐩  or a time-varying 

reference trajectory 𝐩 (𝑡) , the primary control objective is to 

drive the AUV as close as possible to the reference point or tra-

jectory in some best possible way, particularly in the sense of 

minimizing a quadratic function of the position error  

𝚫𝐩 (𝑡) 𝑄  𝚫𝐩(𝑡)𝑑𝑡,      𝚫𝐩(𝑡)
0

= 𝐩(𝑡) − 𝐩 (𝑡) (5) 

over the specified or some reasonable time horizon [𝑡0, 𝑡 ]. The 

control scheme should ensure that all system constraints are sat-

isfied at all times. Further, it is also expected to show a reasona-

bly good performance even when there are disturbances and pa-

rameter uncertainties or some minor faults in the system model. 

2.2.4 Other Considerations 

A control scheme designed to achieve the above-mentioned 

control objective needs to be aware of the desired reference tra-

jectory and the vehicle state at all times. It is assumed that the 

AUV receives tracking mission information through suitable 

communications from some external agency or it is capable of 

generating the reference trajectory itself. Further, it is supported 

by an appropriate navigation system with several sensors whose 

readings can be used to estimate the actual state of the AUV. Nav-

igation schemes for autonomously operating systems have been 

well researched and newer and more promising techniques con-

tinue to be explored (see, e.g., [31], [32]). 

3. AUV Trajectory Tracking with NMPC using
Neural-Modeled System Dynamics 

3.1 Basic NMPC Algorithm 

Among various control approaches, MPC is perhaps one of the 

best suited control schemes to achieve the control goal mentioned 

in Section 2.2.3 for a constrained AUV system. MPC uses the 

system dynamics model, usually in the DT framework, to numer-

ically optimize the control input over some time horizon so as to 

minimize a suitably defined cost function over that horizon. This 

optimization is done regularly in real time, usually at every dis-

crete time step to update the control input to be applied to the 

system.  

Consider a DT version of model (3), viz., 

𝐱(𝑘 + 1) = 𝝓 𝐱(𝑘), 𝐮(𝑘), 𝐝(𝑘) ,  𝐲(𝑘) = 𝐶𝐱(𝑘) (6) 

Here, 𝐱(𝑘), 𝐮(𝑘), 𝐝(𝑘) and 𝐲(𝑘) represent the values of the sig-

nals at the discrete sampling time 𝑘𝑇, 𝑘 ∈ ℤ, where 𝑇 is the sam-

pling period.  An MPC scheme meant to achieve the desired tra-

jectory tracking by the AUV uses a cost function of the form 

𝐽(𝐱(𝑘), 𝑈(𝑘), 𝑘) = ℓ(𝐱(𝑘 + 𝑖|𝑘), 𝐮(𝑘 + 𝑖|𝑘), 𝑘 + 𝑖) 

1

0

(7) 

with   ℓ(𝐱, 𝐮, 𝑘) = ‖𝐱 − 𝐱 (𝑘)‖2 + ‖𝐮 − 𝐮 (𝑘)‖2   

where 𝑄 and 𝑅 are positive (semi-)definite matrices defining the 

stage cost function ℓ(.,.,.) and 



Computationally efficient trajectory tracking control of AUVs with nonlinear model predictive control using neural-based dynamics modeling 

Journal of Advanced Marine Engineering and Technology, Vol. 48, No. 4, 2024. 8   211 

𝑈(𝑘) = [𝐮(𝑘|𝑘)   𝐮(𝑘 + 1|𝑘) … …  𝐮(𝑘 + 𝑁 − 1|𝑘)  ]  

is the stacked vector of inputs to be optimized. The MPC optimi-

zation problem to be solved at each time step 𝑘 is stated as 

minimize
( )

 𝐽(𝐱(𝑘), 𝑈(𝑘), 𝑘) (8) 

 such that 

𝐱(𝑘|𝑘) = 𝐱(𝑘) 

𝐱(𝑘 + 𝑖 + 1|𝑘) = 𝝓 𝐱(𝑘 + 𝑖|𝑘), 𝐮(𝑘 + 𝑖|𝑘), 𝐝(𝑘 + 𝑖|𝑘) , 

 𝑖 = 1, . . , 𝑁 − 1 

𝑀𝐱 𝐱(𝑘 + 𝑖|𝑘) ≤ 𝟏, 𝑖 = 1,2, . . , 𝑁 

𝑀𝐮 𝐮(𝑘 + 𝑖|𝑘) ≤ 𝟏, 𝑖 = 0,1, . . , 𝑁 − 1 

where matrices 𝑀𝐱 and 𝑀𝐮 in the last two constraints are so cho-

sen that they represent  𝐱(𝑘 + 𝑖|𝑘) ∈ 𝕏 and 𝐮(𝑘 + 𝑖|𝑘) ∈ 𝕌. 

A basic MPC algorithm based on problem (8) is outlined below. 

Algorithm 1: Online MPC algorithm: At each time step 𝑘: 

i) Measure or estimate the state of the system, 𝐱(𝑘).

ii) Solve problem (8) to obtain an optimal 𝑈∗(𝑘).

iii) Apply the control input 𝐮∗(𝑘|𝑘) to the AUV.

The cost function (7) used in the MPC algorithm can be made 

to approximate (5) with the choices 𝑄 = 𝐶 𝐶 and 𝑅 = 0.  Still, 

there are various difficulties in successfully achieving the control 

objective by implementing Algorithm 1. These include theoreti-

cal and practical concerns related to stability, robustness and im-

plementation.  

3.2 Stability 

If the time horizon [𝑡0, 𝑡 ] of the reference trajectory is signif-

icant, covering it entirely in (7) may be computationally prohib-

itive. It is desired that a repeated solution of (8) with a modest 

value of 𝑁 in (7) as outlined in Algorithm 1 ensures the asymp-

totic or exponential convergence of the tracking error  Δ𝐱(𝑘) =

𝐱(𝑘) − 𝐱 (𝑘) to the origin or to a set around it. 

Let us consider the disturbance-free dynamics 

𝐱(𝑘 + 1) = 𝝓𝒐 𝐱(𝑘), 𝐮(𝑘) (9) 

where 𝝓𝒐(𝐱, 𝐮) = 𝝓(𝐱, 𝐮, 𝟎).We make the following assumption 

about the reference trajectory.  

Assumption 1: The desired reference trajectory (𝐱 (𝑘), 𝐮 (𝑘)) 

satisfies the DT state dynamics in (9) : 

𝐱 (𝑘 + 1) = 𝝓𝒐 𝐱 (𝑘), 𝐮 (𝑘)  

Under Assumption 1, the tracking error dynamics are given by 

Δ𝐱(𝑘 + 1) = 𝝓𝒐 𝐱 (𝑘) + Δ𝐱(𝑘), 𝐮 (𝑘) + Δ𝐮(𝑘)

− 𝝓𝒐 𝐱 (𝑘), 𝐮 (𝑘)  

where Δ𝐮(𝑘) = 𝐮(𝑘) − 𝐮 (𝑘). A local linearization of the error 

dynamics about a reference point 𝐫 = (𝐱 (𝑘), 𝐮 (𝑘))  in the de-

sired trajectory results in  

Δ𝐱(𝑘 + 1) = 𝐴𝐫 Δ𝐱(𝑘) + 𝐵𝐫 Δ𝐮(𝑘) + 𝜗 Δ𝐱(𝑘), Δ𝐮(𝑘)  

where  𝐴𝐫 =
𝝓𝒐

𝐱 𝐫
 , 𝐵𝐫 =

𝝓𝒐

𝐮 𝐫
 and 𝜗(. , . ) represents the higher 

order terms. 

If (𝐴𝐫, 𝐵𝐫) is stabilizable, for a Δ𝐱(𝑘) sufficiently close to the 

origin, there exists a state feedback gain matrix 𝐾𝐫 such that with 

𝐮(𝑘) = 𝐮 (𝑘) + 𝐾𝐫Δ𝐱(𝑘),  the tracking error satisfies the con-

tractivity property 

‖Δ𝐱(𝑘 + 1)‖
𝐫

2 < 𝜌‖Δ𝐱(𝑘)‖
𝐫

2 (10) 

with 𝜌 ∈ (0,1)  for some positive definite Lyapunov matrix 𝑃𝐫 

[21]. This fact can be used to construct terminal state feedback 

controllers together with associated invariant sets to be used as 

terminal state constraints in the online MPC optimization prob-

lem to guarantee stability. For a class of tracking problems, a pa-

rameterized state feedback gain and the associated invariant set 

may be computed and used for a range of desired state-input pairs 

[29]. However, computing terminal state-feedback gains and the 

associated invariant sets is usually computationally burdensome. 

As explored in [21], under the local stabilizability condition 

(which the AUV system satisfies), Algorithm 1 with a positive 

definite matrix 𝑄 in (7) and a sufficiently large horizon length 𝑁 

ensures that the tracking error exponentially converges to the 

origin. However, the theoretical bound on the required horizon 

length 𝑁 can be quite conservative.  

3.3 Handling Disturbances and Uncertainties 

The AUV motion model includes the disturbance term d(𝑡) 

which is used to mainly model the effect of ocean currents. This 

creates a difficulty in the evaluation of the cost function and in 

ensuring the constraints in (8). Since the bounds on the disturb-

ance components can be estimated, we can use a robust approach 

to cost evaluation and constraint satisfaction. Potential robust ap-

proaches include the tube-based approach [33], disturbance-feed-

back-based approach (e.g., [34]), and so on. The latter deals with 

linear time-varying systems, and, as we shall see in Section 3.4, 

when problem (8) is solved using the sQP approach, nonlinear 
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dynamics constraints are linearized about the existing state-input 

trajectories effectively resulting in an MPC problem for a linear-

time-varying system.  

The robust approaches, however, usually lead to conservative 

results while significantly increasing the computational burden. 

In our problem, the disturbance input is an input disturbance that 

enters the system in the same way as the control input. It can be 

estimated using an appropriate filter and its effect countered ef-

fectively using the control input. Since the disturbance is slowly 

time-varying, it can be assumed to remain constant through the 

prediction horizon. Slightly tightened input constraints can be 

used to account for potential variations in the disturbance values. 

Since the system model that we use is based on several simpli-

fying assumptions and the model uses a number of parameters 

whose values may only be approximately known, there are other 

potential sources of uncertainties. However, the inherent robust-

ness of the MPC approach due to its receding horizon implemen-

tation can be trusted to handle the effects of these uncertainties.  

3.4 Numerical Implementation 

The desired performance of the control scheme outlined in Al-

gorithm 1 is achieved only under the condition that the DT dy-

namics model is accurate and that the nonlinear optimization 

problem can be numerically solved within a fraction of the sam-

pling period. An exact equivalent DT model of a continuous-time 

nonlinear system is not readily available. Numerical approxima-

tions using Euler difference methods or RK methods are often 

used in applications. However, these numerical approximations 

are accurate only for small sampling intervals. Since we envisage 

the possibility of considering optimizations over longer horizon 

lengths, we consider a more accurate modeling of the DT dynam-

ics using alternative approximations. A suitable approximator in 

this context is a single-layer feedforward neural-network (ff-NN) 

which does not involve nested nonlinear function evaluations. 

This simplifies and speeds up future state computations and also 

provides a simple analytical expression for gradient evaluations 

when solving the numerical optimization problem. 

3.4.1 Neural Modeling of DT Dynamics 

In the continuous-time state equation, the function 𝒇(𝐱, 𝐮, 𝐝) 

is such that the input vectors 𝐮 and 𝐝 always appear together and 

none of the component functions depend on position variables 

𝑥,𝑦 and 𝑧. So, we can assume a single input vector 𝐮 representing 

the combined input and also omit 𝑥,𝑦,𝑧 as variable inputs to the 

DT nonlinear dynamics function. Under these considerations, de-

fining a vector 𝛘 = [𝜓  𝑢  𝑣  𝑤  𝑟] , the DT state equation can be 

written as 

𝐱(𝑘 + 1) = �̅� 𝐱(𝑘) + 𝝓𝒏 𝛘(𝑘), 𝐮(𝑘) (11) 

where �̅�  = diag(𝐼3, 𝟎5×5)  and 𝝓𝒏 𝛘(𝑘), 𝐮(𝑘)   represents the

nonlinear part of DT dynamics. Clearly,  𝝓𝒏(𝛘 , 𝐮) is a continuous 

function of its arguments and it can be approximated to any desired 

accuracy by a ff-NN with a single hidden layer of a sufficiently large 

number of neurons.  Let it be approximated by a network with 𝜂 neu-

rons in the hidden layer: 

𝝓𝒏(𝛘, 𝐮) = 𝑊 𝝋 𝑊 𝛘 + 𝑊 𝐮 + 𝐛 + 𝐞(𝛘, 𝐮) 

where 𝑊 ∈ ℝ ×5  and 𝑊 ∈ ℝ𝜂×4  are the hidden layer weights

for network inputs 𝛘  and 𝐮 , 𝐛 ∈ ℝ   is the bias vector and 

𝑊 ∈ ℝ8×  is the output layer weight matrix. The vector function

𝝋: ℝ → ℝ  is a diagonal operator that applies an identical con-

tinuous nonlinearity 𝜑 (. ) = 𝜑(. ), usually a sigmoidal function 

(e.g., tanh(.) function) to each component of the argument of 

𝝋(. ).  𝐞(𝛘, 𝐮) represents the approximation error and is assumed 

to be small.     

The ff-NN representing the nonlinear DT dynamics function 

𝝓𝒏(𝛘, 𝐮) needs to be suitably trained by generating a rich set of 

input-output data samples through numerical simulations. Input 

data samples are chosen randomly from within the bounds con-

sidered and the corresponding output samples are computed us-

ing highly accurate numerical integration.  

3.4.2 Numerical Solution of the MPC Optimization Problem 

Having obtained a sufficiently accurate neural-based model of 

nonlinear DT dynamics, we follow the sQP-based algorithm 

mentioned in [29] to numerically solve the MPC optimization 

problem (8) where we replace the nonlinear dynamics constraint 

by the neural-based model 

𝐱(𝑘 + 𝑖 + 1|𝑘) = �̅�𝐱(𝑘 + 𝑖|𝑘)+ 𝑊 𝝋 𝐳(𝑘 + 𝑖|𝑘) (12)  

where 𝐳(𝑘 + 𝑖|𝑘) = 𝑊 𝐺𝐱(𝑘 + 𝑖|𝑘) + 𝑊 𝐮(𝑘 + 𝑖|𝑘) + 𝐛 with 

𝐺 = [𝟎5×3   𝐼5]. Here, we have assumed that the approximation 

error is negligible. The algorithm is based on the linearization of 

the nonlinear equation in (12) about the existing feasible state 

and input trajectories. Given an existing feasible input sequence  

𝑈(𝑘) = [𝐮(𝑘|𝑘)    𝐮(𝑘 + 1|𝑘) … … 𝐮(𝑘 + 𝑁 − 1|𝑘)  ]  

the corresponding state sequence 

𝑋(𝑘) = [ 𝐱(𝑘|𝑘)    𝐱(𝑘 + 1|𝑘) … … 𝐱(𝑘 + 𝑁|𝑘)𝑻 ]  
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can be immediately obtained using (12). Linearizing (12) using 

the fist-order Taylor expansion of the function  𝝋(.) about the ex-

isting state-input trajectories gives us 

𝐱(𝑘 + 𝑖 + 1|𝑘) = 𝐴(𝑘 + 𝑖|𝑘) 𝐱(𝑘 + 𝑖|𝑘) 

 +𝐵(𝑘 + 𝑖|𝑘) 𝐮(𝑘 + 𝑖|𝑘) +  𝐡(𝑘 + 𝑖|𝑘)     (13)

where 

𝐴(𝑘 + 𝑖|𝑘) = �̅� + 𝑊  diag 𝝋 𝐳(𝑘 + 𝑖|𝑘) 𝑊 𝐺

𝐵(𝑘 + 𝑖|𝑘) = 𝑊  diag 𝝋 𝐳(𝑘 + 𝑖|𝑘) 𝑊

𝐡(𝑘 + 𝑖|𝑘) =  𝑊 𝝋 𝐳(𝑘 + 𝑖|𝑘)  − (𝐴(𝑘 + 𝑖|𝑘) − �̅�) ×

       𝐱(𝑘 + 𝑖|𝑘) − 𝐵(𝑘 + 𝑖|𝑘)𝐮(𝑘 + 𝑖|𝑘) 

Here, 𝝋 (. ) = 𝜑 (𝑧̅ ) … 𝜑 𝑧̅    is a vector with compo-

nent-wise derivatives. 

With the linearized version (13) of the dynamics constraint 

for 𝑖 = 0,1, . . , 𝑁 − 1 , the optimization problem (8), can be ex-

pressed as a QP problem  

minimize  
( )

‖[𝐱(𝑘)     𝑈(𝑘) ] ‖𝐇
2 (14) 

such that   𝐌[𝐱(𝑘)     𝑈(𝑘) ] ≤ 𝟏 

with appropriately defined matrices 𝐇 and M (See, e.g., [29],[34] 

for the details.  

In the following, we briefly outline the sQP-based algorithm 

to solve problem (14). 

Algorithm 2: sQP-based solution of neural-modeled NMPC problem 

i) If 𝑘 = 0, choose a feasible initial decision vector

𝑈(𝑘) = [𝐮(𝑘|𝑘)   𝐮(𝑘 + 1|𝑘) … 𝐮(𝑘 + 𝑁 − 1|𝑘)  ]  

Else, set 𝐮(𝑘 + 𝑖|𝑘) = 𝐮(𝑘 + 𝑖|𝑘 − 1), 𝑖 = 0, . . , 𝑁 − 2 

and  𝐮(𝑘 + 𝑁 − 1|𝑘) = 𝐮(𝑘 + 𝑁 − 2|𝑘 − 1).    

Also, using (12), find the corresponding state sequence 

{𝐱(𝑘 + 𝑖|𝑘} . 

ii) Compute 𝐴(𝑘 + 𝑖|𝑘), 𝐵(𝑘 + 𝑖|𝑘) and 𝐡(𝑘 + 𝑖|𝑘) for 𝑖 =

0, … , 𝑁 − 1 as mentioned in (13).

iii) Imposing an additional constraint 𝑈(𝑘) − 𝑈(𝑘) ∈ 𝒰 for

some suitably chosen set 𝒰, solve (14) to obtain 𝑈∗(𝑘).

iv) If ‖𝑈∗(𝑘) − 𝑈(𝑘)‖ ≤ 𝜖, stop.

Else

 Compute the state sequence {𝐱∗(𝑘 + 𝑖|𝑘}  corre-

sponding to the optimal solution 𝑈∗(𝑘).

 If 𝐱∗(𝑘 + 𝑖|𝑘) ∈ 𝕏, 𝑖 = 1, … , 𝑁, set 𝑈(𝑘) = 𝑈∗(𝑘)

and go to Step (ii).

Else, update the set 𝒰 and go to Step (iii).

The approach outlined in Algorithm 2 is also referred to as fea-

sibility-perturbed sequential QP approach [35] since the feasibil-

ity is ensured through nonlinear propagation after each iteration. 

The additional constraint used in Step (iii) is a trust region con-

straint imposed to ensure that the new computed vector 𝑈(𝑘) 

does not deviate too much from 𝑈(𝑘) so that the convergence of 

the solution can be ensured. A proper initialization procedure 

starting with a small 𝑁 is usually required to obtain a feasible so-

lution at time 𝑘 = 0. With a proper initialization and a suitable 

trust region constraint, the algorithm gives a near-optimal solu-

tion within a few iterations. 

4. Numerical Simulations

4.1 AUV Details 

Extensive simulations are carried out to assess the perfor-

mance of the proposed approach. Parameters specifying the dy-

namics of the AUV and the constraints applicable on speeds and 

thruster actions are mentioned in Table 1. 

Table 1: AUV dynamics parameters and constraints 

Mass / 
Inertia 

Hydrodynamic damping 
Coefficients 

Speed limits 
Thruster 
limits 

𝑚  40 𝑋  -70 𝑋 | | -100 𝑢 1 �̂�  200 

𝑚  51 𝑌  -100 𝑌 | | -200 𝑣 0.12 �̂�  25 

𝑚  51 𝑍  -100 𝑍 | | -100 𝑤 0.75 �̂�  180 

𝐼  15 𝑁  -50 𝑁 | | -100 �̂� 𝜋/4 �̂�  100 

Restoring forces: 𝑊 = 343.5, 𝐵 = 345 

4.2 AUV DT Dynamics Modeling with NNs 

We obtain two ff-NNs – NN-1 and NN-2 to represent nonlinear 

DT dynamics for two different sampling periods – 𝑇1 = 1s and 

𝑇2 = 0.25s. Both are trained with about 10000 samples of input-

output data. Input data samples are selected randomly from the 

set 1.1([−𝜋, 𝜋] × 𝐺𝕏 × 𝕌 ) where the set [−𝜋, 𝜋]  is the range 

chosen for the yaw angle 𝜓. The factor 1.1 is used to provide 

some margin at the constraint boundaries. Outputs corresponding 

to input samples are obtained using the ode45 solver in 

MATLAB. Networks NN-1 and NN-2 are designed with 𝜂1 = 48 

and 𝜂2 = 40 hidden layer neurons which use the tanh() activa-

tion function. After sufficient training, their mean squared error 

(MSE) performances are found to be of the order 10  and 10  

respectively. 

Table 2 gives a comparison, in terms of accuracy and compu-

tational efficiency, of model NN-2 with the popular RK-4 method 
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(which is used, e.g., in [22], [26]). Here, the model accuracy is 

indicated by the MSE over all training and test samples, and, the 

computational efficiency is expressed in terms of the ratio of the 

average model function evaluation time over the average time 

taken by the accurate ode45 method in the same machine. While 

NN-2 is expectedly more accurate for this step size, what is sig-

nificant is its comparative computational advantage which 

should remain significant (for both function evaluation and gra-

dient evaluation) even for small step sizes for which the accuracy 

advantage may not be significant. Note that the RK-4 method is 

not stable with the time step size ℎ = 1.  

Table 2: Comparison of approximations with NN-2 and RK-4 

NN-2 (𝑇 = 0.25) RK-4 (ℎ = 0.25) 

MSE 2 × 10  0.036 

𝑡̅ /𝑡̅  0.004 0.032 

4.3 AUV Mission Simulation with NMPC 

For tracking control performance evaluation, we consider an 

AUV mission comprising predefined time-varying trajectory 

tracking and free set-point tracking segments. In particular, the 

following phases are considered in the mission: 

1) Descending phase: Trajectory tracking phase 1 (100s)

𝑥 (𝑡) = 2 + 0.2𝑡, 𝑦 (𝑡) = 1 + 0.05𝑡,  

𝑧 (𝑡) = 22 − 20𝑒
( ( ) 2)2 ( ( ) 1)2

25

2) Free set-point tracking phase (No fixed target time)

(𝑥 , 𝑦 , 𝑧 ) = (60,10,30) 

3) Object inspection phase (Trajectory tracking phase 2 (800s))

𝑥 (𝑡) = 71 − 10 cos(0.05(𝑡 − 𝑡2))  +  0.01(𝑡 − 𝑡2)

𝑦 (𝑡) = 10 + 8 sin(0.05(𝑡 − 𝑡2)) , 

𝑧 (𝑡)  =  30 − 0.025(𝑡 − 𝑡2) 

where 𝑡2 is the time when Phase 2 is completed. 

We assume that the AUV is initially at rest at (0,0,0). 

4.3.1 Performance in Disturbance-Free Scenario 

We first consider the case without disturbances in the simula-

tion model. In the MPC cost function, we use the cost matrix 𝑄 =

diag(𝐼4, 0.1𝐼4) in all phases, and since the desired inputs are not 

specified, we mildly penalize the actual inputs with 𝑅 = 10 5𝐼4

in Phases 1 and 3 and 𝑅 = 10 3𝐼4 in Phase 2. We also look for a

horizon length 𝑁 that is sufficient to ensure that the predicted ter-

minal state is close to the desired pose throughout the mission. It 

is found that with model NN-1 (𝑇1 = 1s ), a horizon length of 

𝑁 = 10 is generally sufficient when the initial state is not very 

far from the corresponding reference point. In Phase 2, the target 

point is initially not close but to avoid using a large horizon 

length, we consider a virtual reference converging to the target 

point (60,10,30) and update the virtual reference in real time. 

Figure 2 shows the reference and actual AUV position trajec-

tories that we achieve with the MPC scheme using model NN-1 

in the disturbance-free scenario. It can be seen that the MPC is 

able to drive the AUV closely along the desired trajectory. 

Figure 2: AUV trajectory obtained with the MPC scheme in disturb-

ance-free scenario, alongside the reference trajectory 

Figure 3: Position, velocity and thruster force components during 

AUV mission in disturbance-free scenario 

Figure 3 shows the position and velocity components of the 

AUV state and the thruster forces in 𝑥-,𝑦-,𝑧- directions.  It can 

be seen that the z-direction thruster reaches the limit during Phase 

1 when the decent is steep. Similarly, the surge and sway speed 

limits are reached during Phase 2. Figure 4(a) shows the position 

tracking errors during Phase 1 and 3, and it can be seen from the 
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figure that the tracking error is within ±0.025m in each dimen-

sion. Note that the tracking error is not relevant in Phase 2.  

In order to assess the impact of the accuracy of the dynamics 

model, we also simulate the performance of the MPC scheme 

with model NN-2. Since NN-2 uses a sampling time of 0.25s, a 

horizon length of 10s would require 𝑁 = 40. However, since the 

input can be updated quickly, we consider 𝑁 = 10 as earlier. The 

tracking response is similar to the one obtained with NN-1. How-

ever, as we can see in Figure 4(b), which presents the position 

tracking errors during Phase 1 and Phase 3, the tracking errors 

are smaller with NN-2 than with NN-1. 

Figure 4: Position tracking errors in Phases 1 and 3 in disturbance-

free scenario: (a) with model NN-1, (b) with model NN-2 

This can be expected since model NN-2 is at least one order of 

magnitude more accurate (in terms of MSE values) than NN-1 

and it also updates the control actions 4 times more frequently. 

4.3.2 Performance in the Presence of Disturbances 

We next consider a scenario with disturbance inputs. Disturb-

ances are mainly due to water currents inside the sea and are 

slowing varying in time but there can be other sources too. We 

consider a disturbance vector of the following form: 

𝐝 =

⎣
⎢
⎢
⎡

8 sin(0.1𝑡) + 2𝑣1
8 cos(0.1𝑡 − 0.3) + 2𝑣2
8 cos(0.1𝑡 + 0.8) + 2𝑣3

2 sin(0.1𝑡 + 0.5) + 0.05𝑣4⎦
⎥
⎥
⎤
 

where 𝑣 , 𝑣 , 𝑣 , 𝑣   are zero-mean Gaussian random variables 

with unit variance.  

Figure 5 shows the tracking errors in Phases 1 and 3 in the 

presence of disturbance inputs. The errors in Part (a) are for the 

scheme with NN1 and those in Part (b) are for that with NN-2. 

Note that the transient phase is not shown. Evidently, the error 

magnitudes in the presence of disturbances are larger by a factor  

of about 5 (compare with Figure 4). Also, the error magnitudes 

are lower by about 50% with NN-2 than with NN-1 for reasons 

mentioned above. Nevertheless, the MPC scheme is able to limit 

the tracking errors within about 10cm in each direction when 

NN-1 is used and within about 5cm when NN-2 is used. 

Figure 5: Position tracking errors in Phases 1 and 3 in the presence 

of disturbances: (a) with model NN-1, (b) with model NN-2 

4.3.3 Performance in the Absence of Sway Control 

In this part, we explore the performance of the MPC scheme 

in a scenario with a faulty sway (transverse direction) actuator. 

Even without a fault, the sway control considered in our scheme 

is limited because of the limitation in sway speed and sway-di-

rection thrust. When sway control is completely absent, the AUV 

is considered to be underactuated and its maneuvering ability 

may be restricted in some situations. We consider this situation 

in the presence of disturbances as mentioned in Section 4.3.2.  

Figure 6 shows the state and control components evolving under 

the MPC scheme (using NN-1) in this scenario. It can be ob-

served that while the control inputs (except 𝜏 , which is zero) and 

the velocities react and fluctuate to correct the effect of the dis-

turbances that affect the system, position components vary rather 

smoothly with time. 

The plots in Figure 7 show 3D position errors (𝑒 =

(𝑥 − 𝑥 )2 + (𝑦 − 𝑦 )2 + (𝑧 − 𝑧 )2 )   during Phase 3 in the 
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three different scenarios considered (in Sections 4.3.1~4.3.3). 

The errors in the first figure are obtained with model NN-1 

and those in the second figure are obtained with model NN-2. 

Clearly, the presence of disturbances increases the tracking error 

and the actuator fault further increases it. And, because of higher 

accuracy and smaller sampling time, with model NN-2, errors are 

smaller by a factor of about 2. 

4.3.4 Computational Requirements 

Solving the nonlinear MPC problem is computationally de-

manding. Algorithm 2 requires a repeated solution of a QP prob-

lem at every time step. It is found that, except at the first step of 

every phase, the algorithm converges in up to 4 or 5 steps. The 

initial step requires the search for an initial feasible solution 

which may take 5 to 10 or more steps depending on the horizon 

length. We use the QP solver qpOASES [36] in MATLAB in a 

Windows machine with Intel i7 1.8 GHz processor and 24 GB 

RAM for the computations. It is found that the computations (QP 

solving and other preparatory computations) to be made after the 

measurement of the state at each step to obtain the optimal solu-

tion take, on the average, about 19ms when NN-1 is used and 

about 15ms when NN-2 is used for a horizon length of 𝑁 = 10. 

In the absence of sway control, since we have a fewer number of 

optimization variables, the corresponding average computation 

times are slightly smaller – 15ms and 12ms respectively. Clearly, 

these computation times are small fractions of the respective 

sampling times and therefore they do not adversely affect the im-

plementability of the control scheme. 

5. Conclusion

The problem of 3D trajectory tracking of AUVs under 4 or 3 

degrees of maneuverability was addressed with an effective and 

efficient nonlinear MPC scheme that uses a suitable modeling of 

the DT dynamics of the system using a ff-NN. An accurate NN-

based DT dynamics model simplifies the online state propagation 

and cost gradient computations when solving the nonlinear MPC 

optimization problem with a sequence of QPs. Realistic 

Figure 6: The evolution of state and control components during the mission without sway control in the presence of disturbances 

Figure 7: 3D position tracking errors in various scenarios with dynamics models NN-1 and NN2 
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numerical simulations have shown the effectiveness of the ap-

proach in various situations including the presence of random 

and non-random disturbances and/or the lack of maneuverability 

along the sway direction. 
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