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Abstract: Monitoring the amount of CO2 emitted by individual ships in real-time is currently impossible. Therefore, we conducted a 

study to predict and map CO2 emissions using gradient boosting-based models trained based on ship data and emission data collected 

from ships. The extreme gradient boosting (XGBoost) and light gradient-boosting machine (LightGBM) models were used, and a 

hyperparameter tuning process was performed to improve the model performance. The results confirmed that hyperparameter optimi-

zation improves model performance. Based on these models, CO2 emissions were predicted and expressed in a map with black, red, 

orange, and yellow colors, according to the range of CO2 emissions for the three voyages, consequently confirming that the ship itself 

or the ship management company can monitor CO2 emissions from ships by mapping them on a global map. 
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1. Introduction 
Ship emissions affect the environment, economy, and human 

health. Environmental damage includes climate change caused 

by greenhouse gases (GHG) such as carbon dioxide (CO2), me-

thane (CH4), and nitrous oxide (N2O) [1][2]. Climate change af-

fects the weather (higher average temperatures, longer-lasting 

droughts, more intense wildfires, and stronger storms), environ-

ment (melting sea ice, sea level rise, flooding, warmer ocean wa-

ters and marine heat waves, and ecosystem stressors), agriculture 

(less predictable growing seasons, reduced soil health, and food 

shortages), animals, and humans (human health, worsening ineq-

uity, displacement, and economic impacts) [3]. As CO2 accounts 

for the largest proportion of greenhouse gas (GHG) emissions, 

research and policies to reduce it are actively underway. Interna-

tionally, efforts have focused on regulating GHG emissions from 

ships by introducing the existing energy efficiency ship index 

(EEXI) and carbon intensity indicator (CII) [4]. Furthermore, re-

search is actively being conducted on eco-friendly fuels such as 

ammonia, methanol, and hydrogen, and post-treatment processes 

such as CO2 capture system (carbon capture, utilization, and stor-

age (CCUS)) [5]-[7]. 

Economic damage includes carbon taxes caused by ship 

emissions and damage caused by natural disasters due to global 

warming. Human health damage includes premature deaths ow-

ing to global shipping-sourced emissions [8]. Therefore, moni-

toring ship emissions and implementing appropriate measures to 

reduce them is crucial. However, installing equipment to measure 

ship emissions is not common owing to high equipment costs and 

less stringent regulations.  

To address this issue, studies have focused on predicting emis-

sions using machine learning (ML)-based methods. Yang et al. 

predicted GHG emissions with 92.5% accuracy based on the sail-

ing speed, displacement, and weather conditions in an oil tanker 

noon report [9]. Lee et al. predicted fuel consumption and carbon 

emissions using random forest, LightGBM, and long short-term 

memory (LSTM) based on the operation data of dual-fuel pro-

pulsion ships [10]. Cao et al. predicted fuel sulfur content using 

an ultraviolet image of an exhaust plume obtained from an ultra-

violet camera and a convolutional neural network [11]. Reis et al. 

used regression models based on profile-driven features and sta-

tistical pattern analysis to predict the CO2 emissions of Ro-Pax 

ships sailing medium and long routes [12]. Liu and Duru 
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developed a Bayesian ship traffic generator to overcome the lim-

itation of the inability to identify future ship movements, with 

ship emission forecasts generated accordingly [13]. Lepore et al. 

compared and analyzed several regression techniques to predict 

CO2 emissions [14]. In addition to focusing on emissions predic-

tion, research on emissions mapping is actively underway. 

Buber et al. used point density analysis in MapInfo v.16 to repre-

sent the spatial distribution of emissions from domestic shipping 

[15]. Topić estimated the CO2 emissions of containership traffic for 

a year using statistical energy analysis methodology and expressed 

this on a spatial map [16]. Huang et al. expressed the annual NOx 

emissions from ships as spatial distributions using traditional and dy-

namic methods [17]. However, no study has predicted or mapped the 

emissions generated from ships in real time. Therefore, in this study, 

we created a model to predict emissions using ML technologies 

based on big data collected from ships and then mapped these emis-

sions accordingly. Section 2 describes ship specifications, sailing 

routes, and data acquisition. Section 3 describes the gradient-boost-

ing-based algorithms—extreme gradient boosting (XGBoost) and 

light gradient-boosting machine (LightGBM). Section 4 describes 

data preprocessing, model training, and hyperparameter optimiza-

tion. Section 5 discusses the results of hyperparameter optimization, 

prediction results, and mapping of the predicted emissions. Section 

6 summarizes the results. 

2. Data Acquisition
2.1 Ship Specifications and Sailing Routes 

Table 1: Main specifications of the training ship. 

Subject Value Subject Value 

IMO No. 9807279 Breadth extreme 
(m) 19 

Name HANNARA Year built 2019 

Vessel type Training ship Engine type MAN 6S40ME-
B9.5 

Flag South Korea Power 6,618 kW at 146 
rpm 

Gross tonnage 
(t) 9,196 Propeller blades 4 

Summer 
deadweight (t) 3,671 Propeller diam-

eter (m) 4 

Length overall 
(m) 133 

The test object used to predict the emissions in this study was 

a recently built training ship. The training ship, built in 2019, is 

equipped with a data acquisition (DAQ) system that automati-

cally collects information from the sensors of various marine ma-

chinery. The main specifications of the training ship are listed in 

Table 1. 

The training ship, shaped like a cruise ship, is equipped with 

an electronic control main engine (M/E) from MAN E-S, with 

the long shaft installed according to the training ship structure.  

The training ship sails periodically to train future navigators 

and engineers, with the routes on which the data are used in this 

study described in Table 2. 

Table 2: Description of sailing routes. 

Voyage Date for acquiring data 
Masan 2022.04.25–26 

Incheon 2022.05.25–30 

Ulleungdo 2022.06.25–27 

The training ships sailed to Masan, Incheon, and Ulleungdo at 

monthly intervals from April to June 2022. The sailing route for 

each voyage is illustrated in Figure 1. Global positioning system 

(GPS) information was collected for each voyage, and the sailing 

routes were displayed according to latitude and longitude, as 

shown in Figure 1.  

Figure 1: Sailing routes of Masan, Incheon, and Ulleungdo voy-

ages 

In Figure 1, blue, purple, and green represent the Ulleungdo, 

Masan, and Incheon voyages, respectively. All voyages began in 

Busan, where the training ship was located.  

2.2 Data Acquisition 
 The data collected in the DAQ system for each voyage were 

converted to a CSV file format. CO2 emission data were collected 

using a Testo 350 instrument, and the final dataset was created 

by merging data from the same time as the CSV file collected 

from DAQ.  

The data for the Masan, Incheon, and Ulleungdo voyages con-

sist of 292 rows and 211 columns, 305 rows and 211 columns, 
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and 943 rows and 211 columns, respectively. The rows represent 

data by time, and the columns represent the variables for the sen-

sors.  

However, as not all 211 variables were related to CO2 emis-

sions, variables unrelated to CO2 emissions based on marine en-

gineering field experience were excluded. With information 

available on the exhaust gas outlet temperature of all six cylin-

ders in the variables, their averages were calculated and desig-

nated as a new variable to avoid data redundancy. 

As a result, the following variables were selected as final input 

variables: (1) M/E scavenge air receiver inlet pressure, (2) M/E 

scavenge air receiver temperature, (3) M/E turbocharger (T/C) 

exhaust gas inlet temperature, (4) M/E T/C exhaust gas outlet 

temperature, (5) M/E revolutions per minute (rpm), (6) M/E T/C 

rpm, (7) M/E fuel (governor) index, (8) M/E load, (9) Shaft 

power, (10) M/E fuel consumption, (11) Speed log, (12) Average 

mean indicated pressure, (13) Average maximum cylinder pres-

sure, (14) Average cylinder compression pressure, (15) M/E cyl-

inder exhaust gas outlet temperature. 

The largest portion of the emissions from ships is generated 

from the M/E because the M/E consumes the most fuel oil to pro-

pel the ship and produces the largest amount of energy.  

The M/E was started with compressed air, and high-pressure 

air sequentially entered the cylinder according to the firing order 

of the air distributor, thereby initiating the reciprocating move-

ment of the M/E. In an M/E starting with pressurized air, a com-

bustion occurs within the cylinder owing to fuel injection, and 

the M/E gains rotational power through continuous combustion. 

The exhaust gas generated by the combustion of the air and fuel 

mixture passes through the T/C before being discharged into the 

atmosphere through a funnel. The T/C compressor pressurizes 

the air and sends it to an air cooler. Pressurized and cooled air 

passes through the air receiver and enters the cylinder of the M/E. 

These input variables are selected based on the M/E operation 

process. Among the input variables, (7)–(11) were correlated 

with CO2 emissions, numbers (12)–(14) were variables repre-

senting the M/E performance, and (15) was the average value of 

the exhaust gas temperatures of the six cylinders. 

3. Gradient Boosting-Based Algorithms
Gradient boosting is a technique applied to decision tree-based 

algorithms. This method creates a strong ensemble model by con-

sidering the decision tree as a weak learner and continuously 

training it using gradient descent to minimize the error between 

the actual and predicted values. In other words, each new deci-

sion tree is trained based on the errors of the previous decision 

tree. Representative algorithms based on gradient boosting in-

clude DMLC XGBoost and Microsoft's LightGBM [18][19]. 

3.1 XGBoost 
XGBoost uses classification and regression trees (CART) as 

its base classifier, solves both regression and classification prob-

lems, and uses user-created objective functions [20].  

Original gradient boosting builds decision trees in series, 

whereas XGBoost builds them parallelly [21]. Simultaneously, 

the newly created decision trees predict the residuals of the pre-

vious decision trees and use them for the final prediction. The 

gradient descent algorithm minimizes loss when adding newly 

created decision trees [22]. XGBoost surpasses existing gradient-

boosting models in terms of high computing speed, expandabil-

ity, and performance [23]. 

3.2 LightGBM 
LightGBM uses gradient-based one-sided sampling (GOSS) 

and mutually exclusive feature bundling (EFB). The traditional 

method uses the level-wise method to reduce training data, 

whereas LightGBM uses the leaf-wise method [24]. GOSS splits 

the optimal nodes by calculating the variance gain, whereas EFB 

increases the training speed by bundling many exclusive features 

into fewer dense features [25]. LightGBM has the advantages of 

fast training speed, high accuracy, GPU learning, handling large 

datasets, and reducing memory occupation [26].  

4. Modeling
4.1 Data Preprocessing 

The Masan, Incheon, and Ulleungdo datasets were combined 

to create the total dataset, with a heat map created (Figure 2) to 

confirm the correlation between the input and output variables 

for the total dataset. Considering the output variable CO2 is on 

the right side of the correlation heatmap, its correlation with the 

input variables can be verified. Referring to Figure 2, the “M/E 

scavenge air receiver temperature” and “average cylinder com-

pression pressure” were removed because they had low correla-

tions with CO2.  

The total dataset was divided into training, validation, and 

testing sets at a ratio of 6/2/2, with the data randomly shuffled 

during the division. 

4.2 Model training 
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The XGBoost and LightGBM models were trained on the 

training set using default hyperparameters. Performance metrics 

of mean absolute error (𝑀𝑀𝑀𝑀𝑀𝑀), 𝑅𝑅2, and mean absolute percentage 

error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ) were used to evaluate the performance of the 

trained models; their equations are listed in Table 3 [27]. 

Figure 2: Correlation heatmap for the total dataset 

Table 3: Performance metrics for evaluation 
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Table 4: Performance metrics for XGBoost and LightGBM with 

default hyperparameters 

Training Valida-
tion 

Testing 

XGBoost 
𝑀𝑀𝑀𝑀𝑀𝑀 0.0090 0.1024 0.1519 
𝑅𝑅2 0.9997 0.8796 0.8073 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 0.0020 0.0254 0.0934 

LightGBM 
𝑀𝑀𝑀𝑀𝑀𝑀 0.0846 0.1187 0.1901 
𝑅𝑅2 0.9309 0.8680 0.7781 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 0.0362 0.0302 0.1022 

The prediction results for the training, validation, and testing 

sets of the trained models are listed in Table 4. Both models had 

high-performance metrics in the order of training, validation, and 

testing sets. When comparing the performances of XGBoost and 

LightGBM, XGBoost exhibited a higher performance for all da-

tasets. 

4.3 Hyperparameter Optimization 
XGBoost and LightGBM have various hyperparameters, and 

their model performance improves depending on their optimal 

combination. Therefore, this study uses the weight and bias 

(W&B) library, which performs the hyperparameter optimization 

process. 

Considering XGBoost and LightGBM are gradient-boosting-

based algorithms that share similar hyperparameters, hyperpa-

rameters common to both algorithms were selected for optimiza-

tion. The selected hyperparameters and their ranges are listed in 

Table 5.  

Table 5: Hyperparameters and their ranges for XGBoost and 

LightGBM. 

Hyperparameters Ranges 
Learning_rate 0.001, 0.01, 0.1, 1 

N_estimators 
100, 200, 300, 400, 500, 600, 

700, 800, 900, 1000 
Subsample 0.5, 0.6, 0.7, 0.8, 0.9, 1 

Colsample_bytree 0.001, 0.01, 0.1, 1 
Max_depth 4, 5, 6, 7, 8 

Min_child_weight 0.001, 0.01, 0.1, 1 

“Learning_rate” sets how much previous results are reflected 

at each learning stage. “N_estimators” or “Num_iterations” is the 

number of decision trees. “Subsample” is the data sampling rate 

for each decision tree. “Colsample_bytree” is the feature sam-

pling rate for each decision tree. “Max_depth” is the maximum 

depth of the decision tree. “Min_child_weight” is the minimum 

sum of weights for all observations required in child. 

In the W&B optimization process, the range of hyperparame-

ters was set, and optimization was performed 100 times by ran-

dom search, aiming to minimize the MAE. 

5. Result and Discussion

5.1 Results of Hyperparameter Optimization 
Figures 3 and 4 show the MAE performances of XGBoost and 

LightGBM over time, respectively. The MAE values are incon-

sistent because the hyperparameters are tuned using a random 

search method in the W&B library. Comparing XGBoost and 

LightGBM, XGBoost performed better for more hyperparameter 

combinations than LightGBM, suggesting that the XGBoost 

model exhibits higher overall performance than the LightGBM 
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model for the data and hyperparameter range used in this study. 

Figure 3: Progress of hyperparameter optimization for XGBoost 

Figure 4: Progress of hyperparameter optimization for 
LightGBM 

Figure 5: Parallel coordinate plot for XGBoost 

Figure 6: Parallel coordinate plot for LightGBM 

Figures 5 and 6 show the hyperparameter tuning processes of 

the two models in parallel coordinate plots. As confirmed in 

Figures 3 and 4, most of the hyperparameter combinations in Fig-

ure 5 show that the MAE converges to nearly zero, and in Figure 

6, they appear to have various MAE ranges. Considering the par-

allel coordinate plot displays the results of hyperparameter tun-

ing in real-time as a colored line, initially setting the hyperpa-

rameter ranges would help developers. 

Table 6 shows hyperparameter combinations with the lowest 

MAE for the validation set as a result of hyperparameter tuning. 

The two models shared the same hyperparameters for “Learn-

ing_rate” and “Colsample_bytree,” and similar hyperparameters 

for “Subsample” and “Max_depth.” However, “N_estinators” 

and “Min_child_weight” showed conflicting results. 

Table 6: Optimized hyperparameters for XGBoost and 

LightGBM. 

XGBoost LightGBM 
Learning_rate 0.1 0.1 
N_estimators 200 600 
Subsample 1 0.7 

Colsample_bytree 1 1 
Max_depth 8 7 

Min_child_weight 1 0.1 

Figure 7: Parameter importance for XGBoost 

Figure 8: Parameter importance for LightGBM 

Figures 7 and 8 show the importance of the parameters in the 

two models. Parameter importance represents the feature im-

portance values for the model by training the model with 
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hyperparameters as inputs and the performance metric as the tar-

get output.  

The parameter importance results showed that for both mod-

els, “Learning_rate” was the most important for MAE. Further-

more, “N_estimators” or “Num_iterations” were also shown to 

be important for MAE. The “Colsample_bytree” was more im-

portant than “Num_iterations” in LightGBM and followed 

“N_estimators” in XGBoost. Considering our model was trained 

based on big data, “N_estimators,” i.e., the number of trees, was 

important in hyperparameter optimization. In terms of the overall 

parameter importance of the two models, the order of importance 

was similar. 

5.2 Prediction Results of Optimized XGBoost and 

LightGBM 
Table 7 compares the performances of the training, validation, 

and testing sets using the two models to which the optimal hy-

perparameters obtained in Table 6 were applied. Both models ex-

hibited high performance on the training, validation, and testing 

sets for all performance metrics. 

Compared to Table 4, which shows the results of models 

trained with default hyperparameters, Table 7, with optimized 

hyperparameters, showed a higher performance for all perfor-

mance metrics and datasets, confirmed by referring to the per-

centage values of the difference in the performance metrics be-

tween Tables 4 and 7. This result shows that hyperparameter op-

timization is essential for improving model performance. 

Table 7: Performance metrics for XGBoost and LightGBM with 

optimized hyperparameters 

Training Validation Testing 

XGBoost 
𝑀𝑀𝑀𝑀𝑀𝑀 0.0072 0.0916 0.1394 
𝑅𝑅2 0.9998 0.9023 0.8388 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 0.0016 0.0231 0.0782 
Improvement 
for XGBoost 

(%) 

𝑀𝑀𝑀𝑀𝑀𝑀 20 10.5469 8.2291 
𝑅𝑅2 0.01 2.5158 3.7554 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 20 9.0551 16.2741 

LightGBM 
𝑀𝑀𝑀𝑀𝑀𝑀 0.0386 0.1115 0.1782 
𝑅𝑅2 0.9933 0.8913 0.8068 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 0.0108 0.0282 0.0698 
Improvement 

for 
LightGBM 

(%) 

𝑀𝑀𝑀𝑀𝑀𝑀 54.3735 6.0657 6.2599 
𝑅𝑅2 6.2821 2.6142 3.5573 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 70.1658 6.6223 31.7025 

5.3 Mapping of Predicted Emissions by Optimized 

XGBoost and LightGBM 
A range of CO2 emissions values was used to map predicted 

CO2 emissions. The CO2 range refers to the minimum (0.1798%) 

and maximum (6.9169%) CO2 values and quartiles of 25% 

(4.62%), 50% (5.07%), and 75% (5.17%) of the CO2 values in 

the total dataset.  

Figure 9: Mapping of CO2 emissions for three voyages by 

XGBoost 

Figure 10: Mapping of CO2 emissions for three voyages by 

LightGBM 

Figures 9 and 10 show the mapping of CO2 emissions pre-

dicted by XGBoost and LightGBM for the three voyages. The 

color bar at the top right indicates the range of CO2 emissions 

and the highest CO2 emissions in the order of black, red, orange, 

and yellow.  

Figure 11: Enlarged CO2 mapping for Ulleungdo voyage by 

XGBoost 
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Figure 12: Enlarged CO2 mapping for Ulleungdo voyage by 

LightGBM 

The Folium library has a scroll function to provide an overall 

view, as shown in Figures 9 and 10, with the enlarged maps 

shown in Figures 11 and 12. Figures 11 and 12, which show the 

CO2 emissions for the Ulleungdo voyage, indicate that the two 

models show similar overall predictions. With overall CO2 emis-

sions mostly in red and black, considerable CO2 emissions oc-

curred on this voyage. 

Figure 13: Enlarged CO2 mapping for Masan voyage by 

XGBoost 

Figure 14: Enlarged CO2 mapping for Masan voyage by 

LightGBM 

Figure 13 and 14 present the CO2 emission mapping for the 

Masan voyage; while both models show CO2 emissions with or-

ange and yellow colors, they also show black and red colors of 

CO2 emissions at some middle points. 

Figures 15 and 16 present the CO2 emission mapping for the 

Incheon voyage, indicating most of the CO2 emissions were or-

ange- and yellow-colored. With this route, emissions were con-

sidered reduced because of the complete combustion of the fuel 

injected into the M/E. 

Figure 15: Enlarged CO2 mapping for Incheon voyage by 

XGBoost 

Figure 16: Enlarged CO2 mapping for Incheon voyage by 

LightGBM 

5.4 Limitations and Suggestions for Future Work 
The proposed model was based on big data and applied to a 

single ship. Therefore, a certain amount of time is required to 

collect big data from a ship, and an update process to train the 

model with the additional collected data is necessary. Future 

work should focus on developing a model that can be used uni-

versally for multiple ships and on methods to update the model 

using continuously collected data. 

6. Conclusion
Considering that CO2 emissions from ships can cause various 
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environmental, economic, and human health problems, monitor-

ing CO2 emissions on the ship itself or by a ship management 

company will become important in the future when eco-friendli-

ness is emphasized. Therefore, we conducted a study to predict 

CO2 emissions and mapped them using gradient boosting-based 

models.  

Vessel and emission data collected for the Masan, Ulleungdo, 

and Incheon voyages, each a month apart from April to June 

2022, were converted into a total dataset through preprocessing, 

with the total dataset divided into training, validation, and testing 

sets in a ratio of 6/2/2. 

The XGBoost and LightGBM models were trained using the 

default hyperparameters, with their performance evaluated using 

the hyperparameters optimized using the W&B library. As a re-

sult, MAE/R2/MAPE for the XGBoost and LightGBM testing 

sets were 0.1394/0.8388/0.0782 and 0.1782/0.8068/0.0698, re-

spectively, indicating that the performance of the optimized 

model was superior to that of the models with the default hy-

perparameters. 

CO2 emissions were predicted by the optimized models, cate-

gorized by quartile range, and expressed in black, red, orange, 

and yellow, in the order of the highest CO2 emissions. The 

mapped CO2 emissions could be checked using an overall view 

and an enlarged view, thus allowing the ship itself or the ship 

management company to monitor its CO2 emissions. 
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