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Abstract: Studies on the inertial measurement unit (IMU), a fundamental localization solution for mobile devices in inertial odometry 

have been conducted. Most inertial odometry approaches focus on the two-dimensional space; however, technological advancements 

demand the accurate measurement of movements in the three-dimensional (3D) space, making 3D inertial odometry algorithms essen-

tial. Three-dimensional inertial odometry calculates the relative pose based on IMU-measured data, and the estimated pose denotes the 

displacement encountered by the sensor within a unit of time. Subsequently, the trajectory is generated through integration. However, 

many existing approaches are characterized by drift errors owing to the integration processes utilized to estimate position and orienta-

tion. We propose an extended direct orientation inertial odometry network (DO IONet) that directly estimates the orientation to over-

come drift errors, improving the estimation performance of the 3D translation vector. The proposed approach calculates the orientation 

by inputting linear acceleration, gyroscope, gravity acceleration, and geomagnetic values, overcoming drift errors associated with ori-

entation estimation. The extended DO IONet comprises an encoder for local feature extraction and a decoder for sequential feature 

extraction. The proposed model doesn't require structural initialization and doesn't cause drift error because an integration process is 

not required to estimate the orientation. 
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1. Introduction 
Odometry is a positioning technique that estimates relative po-

sitions from an initial set of coordinates using sensors within a 

platform [1]-[3]. Therefore, odometry is primarily utilized in sys-

tems that require independent motion tracking, such as drones, 

vehicles, and vessels, as well as in systems that demand precise 

motion recognition, such as healthcare, sports monitoring, and 

gaming. Odometry methods are classified into four categories 

based on the sensor type: visual odometry (VO) utilizing a cam-

era, light detection and ranging (LiDAR) odometry (LO), radar 

odometry (RO), and inertial odometry (IO) utilizing an inertial 

measurement unit (IMU) [4]. 

VO estimates the trajectory of a platform by analyzing the 

differences between adjacent frames and the current frame col-

lected by a camera, which can be a monocular camera [5][6] or 

stereo [7][8]. VO technology utilizes a high-performance locali-

zation method; however, the multiple images utilized as input 

data occupy significant storage space, and the computational al-

gorithms are correspondingly complex, requiring high-perfor-

mance hardware.  

Generally, LO calculates the current position by matching a 

two-dimensional (2D) terrain map generated using the laser 

speckle pattern created at each time step. Recently, active studies 

into approaches to generate precise 3D terrain maps by utilizing 

improved laser system designs that enable 3D scanning with Li-

DAR have been conducted [9]-[11]. Similar to LO, RO aligns 
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scans acquired via radar sensors that utilize radio waves for de-

termining the positions of surrounding objects, thereby estimat-

ing the relative position of the platform [12]-[14]. This approach 

is being applied in commercial autonomous driving technology 

due to its robust operation, even in adverse weather conditions. 

However, both RO and LO utilize time-series data in the form of 

3D arrays as input and involve computationally intensive algo-

rithms, including exponential functions, that must be executed 

repeatedly. Therefore, applying them to mobile devices with lim-

ited storage and computational capacity is challenging. 

IO can generate the trajectory of a platform by utilizing an 

IMU sensor that outputs acceleration, gyroscope, and geomag-

netic data [15][16]. Input data for IO encompasses all the features 

related to 3D motion and has an extremely small data size. Addi-

tionally, this approach can estimate the orientation in the refer-

ence coordinate system as it utilizes acceleration and magnetom-

eter data as input. Therefore, IO is essential to operate a position-

ing system in a constrained environment where initial values 

other than position coordinates are not defined. IO can be utilized 

as a solution for location correction in environments, such as un-

derground spaces and mountains that render the application of 

infrastructure-based positioning technologies challenging.  

In particular, IO is most suitable for measuring movements at 

a sub-meter scale. However, this approach has two inherent prob-

lems. First, the ambiguity in setting the initial pose of the plat-

form. Ideally, the trajectory can be accurately estimated by uti-

lizing an initial pose value obtained from sensor data collected in 

a known environment. However, setting the initial pose can be 

challenging in common scenarios with devices, such as 

smartphones and smartwatches that generally utilize inertial sen-

sors. While velocity initialization can be achieved through plat-

form control steps, initializing orientation values is considerably 

difficult, as it cannot be constrained by the user's azimuth. The 

second problem is drift error, which results from the continuous 

integration of the pose over time when generating trajectories. 

During this process, the noise inherent in the pose data over the 

unit time interval is also integrated, resulting in considerable er-

rors in the pose when generating trajectories over extended peri-

ods. This problem can be mitigated by periodically resetting the 

pose values.  

Conventional IO approaches include strapdown inertial navi-

gation systems (SINS), which continuously integrate pose over a 

unit time interval to output the current position, and pedestrian 

dead reckoning (PDR), which enhances the trajectory estimation 

performance by initializing poses at specific points. SINS is the 

most intuitive method to estimate relative pose changes by inte-

grating acceleration and angular velocity output from IMUs [17]-

[20]. However, it inevitably introduces drift error because it in-

volves multiple integration steps during trajectory generation. 

Consequently, most SINS techniques aim to improve trajectory 

generation performance by analyzing the noise originating from 

IMU sensors in a multidimensional manner [21][22]. PDR uti-

lizes the fact that the walking speed becomes zero while walking, 

and except for azimuth, orientation remains relatively constant, 

to output 2D position changes [23][24]. The PDR approach lev-

erages the knowledge of when the foot makes contact with the 

ground to address the ambiguity problems in setting the initial 

pose of the platform and drift error. However, owing to the inte-

gration of step length and azimuth value in trajectory generation 

through PDR, drift error occurs, and it remains a 2D odometry 

approach [25].  

Recently, a novel approach called inertial odometry network 

(IONet) has been proposed as an IO technique. IONet utilizes a 

low-cost IMU and is based on deep neural networks. Most IO-

Nets input sequential inertial data into recurrent neural networks 

to output pose over unit time intervals [26][27]. Subsequently, 

the integrated values of these changes are utilized to generate a 

trajectory. IONet can effectively reduce drift errors by utilizing 

all sequential data. The resulting trajectory is similar to that ob-

tained by utilizing the conventional IO method. IONet exhibits 

superior trajectory generation performance compared with SINS, 

which compensates for measurements based on assumptions re-

garding the error model. However, as the estimation time in-

creases, the increasing drift error results in greater pose ambigu-

ity. These factors can influence the trajectory estimation accu-

racy.  

This study proposes an extended direct orientation inertial 

odometry network (DO IONet) that improves the ambiguity in 

setting the initial pose of the platform and drift error by directly 

estimating the orientation, thereby eliminating one integration 

step. The proposed approach circumvents the two problems by 

leveraging the DO IONet framework to accept inertial data as 

input and generate the velocity and orientation as outputs. To 

augment the DO IONet's performance, we conducted experi-

ments by utilizing various network architectures. Consequently, 

we observed that the extended DO IONet, composed of an en-

coder with convolutional layers to extract local features and a de-

coder with transformer blocks to extract sequential features, 
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outperformed alternative methods. This method considerably im-

proved the orientation and 3D translation errors, outperforming 

the existing DO IONet by over 10%. 

The primary contributions and innovations of this study can be 

succinctly outlined as follows:  

1. The proposed DO IONet framework directly estimates ori-

entation from low-cost IMU data, eliminating drift errors.

2. The proposed extended DO IONet method improves the es-

timation performance of orientation and 3D translation vec-

tors.

3. The proposed method is suitable for various applications,

as it enables the estimation of orientation within the refer-

ence coordinate system without orientation initialization.

2. Related Studies
2.1 Three-DOF Inertial Odometry Network 

Figure 1: Framework of a 3-DOF IO 

The degree of freedom (DOF) refers to the number of axes uti-

lized to represent pose changes. In the context of IO, 3-DOF IO 

estimates the relative position changes in a 2D plane, as shown 

in Figure 1. During unit time intervals, the collected IMU data 

are fed to a 3-DOF IO model, which outputs the distance and 

heading. These resultant values can be represented as 2D vectors 

and are referred to as relative position changes, which are added 

to the previous location, indicating the current position. [26] rep-

resented the pioneering learning-based IO approach. The method 

utilizes a support vector machine to classify motions captured by 

IMUs, including standing, walking, and turning, and subse-

quently regress pose vectors. The pose vectors are integrated to 

generate trajectories in a 2D plane. IONet introduced the Oxford 

inertial odometry dataset (OxIOD), which comprises various 

types of inertial data. It estimates trajectories in a 2D plane by 

feeding 2-second-long accelerations and angular velocities into 

two layers of long short-term memory (LSTM) networks 

[27][28]. This was the first approach to apply deep neural 

networks to inertial data and generate trajectories by utilizing raw 

data. Furthermore, [29] proposed an approach to alleviate the 

computational burden of recurrent neural networks by introduc-

ing a lightweight variant of LSTM, called WaveNet. [30] intro-

duced a loss function for orientation, orientation change, and ve-

locity in the reference coordinate system to enhance velocity es-

timation performance. However, these methods are limited in 

that, similar to PDR, they can only generate trajectories in a 2D 

plane. 

2.2 Six-DOF Inertial Odometry Network 

Figure 2: Framework of a 6-DOF IO 

Six-DOF IO represents the change from the initial pose of the 

platform in 3D space, as shown in Figure 2. The pose includes 

the position, which can be expressed by utilizing the x-axis, y-

axis, and z-axis coordinates, and orientation, represented by the 

roll, pitch, and yaw angles. The position and orientation changes 

in the body frame represent the changes in pose over a unit of 

time. These pose changes in the body frame can be transformed 

into a 3D translation vector in the reference coordinate system by 

considering the previous pose. The current pose can be expressed 

as the sum of a 3D translation vector from the starting point. 

Compared with 3-DOF IO, 6-DOF IO utilizes three additional 

coordinate representations, resulting in a considerable increase in 

drift error owing to the additional orientation computations re-

quired. The initial 6-DOF IONet employed a neural network 

composed of convolutional layers and LSTM to estimate 3D pose 

changes by inputting linear acceleration and gyro data [31]. 

These 3D pose changes, when combined with the initial pose, can 

represent a 3D trajectory. However, when utilizing this method, 

the error in the estimated orientation diverged with an increase in 

the estimation time. Therefore, a method to stabilize the orienta-

tion change estimation performance was required. The extended 

IONet proposed incorporating additional inputs of gravitational 

acceleration and geomagnetic data, which are directly related to 
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orientation, as well as introducing a network to extract multidi-

mensional features from gravitational acceleration [32]. The ap-

proach significantly reduced trajectory and orientation errors. 

However, orientation still diverges as the estimation time in-

creases. DO IONet overcomes these limitations by directly esti-

mating the orientation in the reference coordinate system [33]. It 

does not require an initial orientation and avoids drift errors be-

cause only the orientation values are utilized. Consequently, it 

exhibits consistent 3D translation vector estimation performance, 

even with longer estimation periods. 

 

3. Extended Direct Orientation Inertial Odom-

etry Network 
 This section presents the proposed transformer-based ex-

tended DO IONet to enhance the trajectory-tracking perfor-

mance. The proposed method operates within the DO IONet 

framework, comprising encoding and decoding steps. Data ob-

tained from the 9-axis IMU were compressed in the encoding 

step. Time-series data were processed in the decoding step to out-

put the position change and orientation. Subsequently, the calcu-

lated 3D translation vector was integrated to generate the 

trajectory by utilizing the position change and orientation. Vari-

ous experiments were performed to design the most suitable en-

coder and decoder for inertial data. These experiments optimized 

the performance and effectiveness of the proposed method to es-

timate the trajectory and orientation from inertial data. 

3.1 Direct Orientation Inertial Odometry Framework 
As shown in Figure 3, the DO IONet framework comprised 

an encoder to extract local features and a decoder for sequential 

data processing. The encoder aimed to reduce the complexity of 

inertial data and prevent overfitting. The decoder extracted the 

complete pattern by incorporating temporal dependencies into 

the features. It served as a connector that linked each time-step 

feature to regress to a pose.  

The direct orientation IO framework overcame the drift error 

associated with orientation estimation and accurately estimated 

position change and orientation in the reference coordinate sys-

tem. This framework, similar to the DO IONet, comprised an en-

coder to extract local features and a decoder for sequential data 

processing. The encoder decreased the complexity of the inertial 

data and prevented overfitting, whereas the decoder captured 

Figure 3: Overview of the DO IONet framework 
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temporal dependencies in the features, enabling them to effec-

tively regress to a relative position for each time step. 

3.2 Network Architecture 
 The architecture of the proposed network, which inputs four 

types of inertial data in a time-series format and outputs position 

changes and orientation is shown in Figure 4. The four types of 

inertial data include linear acceleration (a), angular velocity (w), 

gravitational acceleration (g), and geomagnetic value (m). One 

set of input data contained 200 inertial data points measured over 

a duration of 2 s. The position change △ 𝑝𝑝 was the velocity be-

tween the 95th and 105th data points within the body frame. 𝑞𝑞 

was the orientation at the 95th frame in the reference coordinate 

system, and quaternions were utilized instead of Euler angles, 

which had limited angular representation ranges, for learning 

convenience. The proposed network comprised a convolutional 

block as an encoder, a transformer block, and fully connected 

layers as decoders. 

The convolutional block comprised two convolutional layers 

and one max-pooling layer. It compressed the local features of 

inertial data to reduce complexity. Each compressed feature was 

concatenated and combined with a positional vector for sequen-

tial data processing in the transformer block. The transformer 

block comprised two layers, each of which employed multi-head 

attention and a feedforward network, as shown in Figure 5. The 

transformer captured the relative importance and context of the 

compressed features and functioned as a decoder, connecting 

each time-step feature for regression. Finally, △ 𝑝𝑝  and 𝑞𝑞  were 

output by utilizing a fully connected layer. Subsequently, 𝑞𝑞 , 

transformed by the rotation matrix along with △𝑝𝑝 , was multi-

plied to generate the trajectory over a unit of time, which is the 

3D translation vector. 

Figure 4: Structure of the extended DO IONet 

Figure 5: Transformer structure 
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3.3 Six-DOF Relative Pose Representation 
 The current position 𝑝𝑝𝑡𝑡 , previous position 𝑝𝑝𝑡𝑡−1 , orientation 

𝑅𝑅(𝑞𝑞𝑡𝑡−1), and position change △ 𝑝𝑝  were utilized to represent the 

pose changes in the reference coordinate system. △ 𝑝𝑝 indicates 

the value in the body frame. The 3D translation vector was deter-

mined by multiplying the previous orientation with △ 𝑝𝑝. Orien-

tation calculations adopted a unit quaternion because the network 

could not learn by utilizing Euler angles. The current position can 

be calculated as follows: 

𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡−1 + 𝑅𝑅(𝑞𝑞𝑡𝑡−1)△ 𝑝𝑝    (1) 

where 𝑝𝑝𝑡𝑡 represents the current position, which is the sum of 

the previous position and the 3D translation vector. It provides a 

concise pose representation and structurally reduces drift errors 

by utilizing the DO IONet framework, which directly estimates 

the orientation. 

3.4 Loss Function 
The 6-DOF IONet designed a loss function for independent 

position values along the three axes and dependent direction val-

ues for the four quaternion vectors. The consideration of the ho-

moscedastic uncertainty for each task is necessary due to the dif-

ferent scales of position and orientation. Therefore, a multitask 

loss was adopted to learn various quantities at different scales 

[34]. 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑒𝑒−𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎𝑖𝑖2𝐿𝐿𝑖𝑖 + 𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎𝑖𝑖2𝑛𝑛
𝑖𝑖=1    (2) 

where 𝜎𝜎𝑖𝑖 and 𝐿𝐿𝑖𝑖 denote the variance and loss functions of the 

𝑖𝑖𝑡𝑡ℎ, respectively. To prevent a division by zero within the total 

loss, the utilization of exponential mapping removed constraints 

on scalar values, and the incorporation of log variance enhanced 

network stability. 

Two loss functions were utilized, as expressed in Equation 

(3). 

[𝐿𝐿1 ,𝐿𝐿2] = [𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , 𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄]     (3) 

where 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷   and 𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄  represent the delta position mean 

absolute error and quaternion multiplicative error, respectively. 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ||△𝑝𝑝 −△ 𝑝̂𝑝|| (4) 

𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄 = ||𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑞𝑞�⨂𝑞𝑞∗)||1   (5) 

where 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  and 𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄 denote the loss functions associated 

with the displacement of the sensor unit within the body frame 

and the orientation within the reference coordinate system, re-

spectively. △ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑞𝑞)  resulted in a complex number being 

treated as a real number. Meanwhile, the ⊗ represents the Hamil-

ton product operator, signifying the addition of two angles that 

indicate the complex conjugate of 𝑞𝑞. 

4. Experiment
4.1 Dataset 

Experiments were conducted by utilizing OxIOD, which pro-

vides four types of inertial data. Inertial data from OxIOD were 

captured by utilizing an iPhone 7 and the ground truth for pose 

was established by utilizing the Vicon motion capture system 

[27]. OxIOD offers four different form factors based on how the 

device is transported: handheld, pocket, handbag, and trolley. We 

utilized the handheld case in our experiments, which provided 

the longest data collection time and distance. The handheld case 

comprised 24 sequences. We discarded the initial 12 s and the 

final 3 s of each sequence to eliminate errors in the Vicon motion 

capture system and facilitate a clear comparison with existing 

models. Furthermore, during OxIOD training, we mitigated an 

error of approximately 1% that occurred when the standard devi-

ation of the difference between consecutive frames and orienta-

tions reached 20°. In testing, data with errors were incorporated 

for comparison with other models. In total, 54,885 training sam-

ples were employed. 

4.2 Training 
The core libraries utilized for training included Tensorflow 

2.4.1, Keras 2.4.3, tfquaternion 0.1.6, and numpy-quaternion 

2022.4.2. We employed an Adam optimizer with a learning rate 

of 0.0001 to converge the loss function. The batch size was set to 

32 and training ran for 500 epochs. A validation data ratio of 10% 

was utilized to monitor the training progress. Our model was 

trained by utilizing an NVIDIA RTX 6000 GPU. 

4.3 Evaluation 
Data were divided into 17 training and 7 testing datasets. The 

model was evaluated from various perspectives by utilizing 

short- and long-term data. The evaluation criteria included the 

trajectory, orientation, and 3D translation vectors. For short-term 

data evaluation, time intervals from 0 s to 20 s and from 100 s to 



Direct orientation estimation through inertial odometry based on a deep transformer model 

Journal of Advanced Marine Engineering and Technology, Vol. 48, No. 2, 2024. 4   102 

120 s were utilized for each test data sequence. For long-term 

data evaluation, the time intervals ranged from 0 s to 100 s and 

from 100 s to 200 s for each sequence. Although the trajectory 

provided insights into the performance across various instances, 

it contained cumulative errors from continuous integration, mak-

ing it less suitable to evaluate the performance of the model over 

a specific unit of time. Therefore, orientation and 3D translation 

vectors were utilized as evaluation metrics for the performance 

assessment per unit of time. Two existing approaches to estimate 

position and orientation changes were evaluated and compared 

with the DO IONet framework. For the DO IONet experiments, 

eight evaluations were performed based on different encoder and 

decoder configurations. Three evaluations were performed on the 

models designed by utilizing stacking transformers. Overall, the 

evaluations encompassed a comprehensive analysis of various 

approaches to estimate the position and orientation changes, in-

cluding two existing methods and multiple configurations of the 

DO IONet framework. 

5. Results and Discussion
5.1 Evaluation of short-term inertial data 

Short-term evaluations were performed by utilizing data from 

0–20 s and 100–120 s. The average trajectory, orientation, and 

3D translation root-mean-square errors (RMSEs) at these two 

time points are listed in Table 1. The models that estimated the 

trajectory and 3D translation vector exhibited superior perfor-

mance in the estimation of position and orientation change. How-

ever, for the orientation, the extended DO IONet with one con-

volutional block and two transformers outperformed the others.  

Experiments with different numbers of convolutional blocks 

were performed to reduce the feature size input to the decoder 

that processed the time-series data. Based on the results, the 

model performed better when only one convolutional block was 

utilized, regardless of the decoder type. This is because the pool-

ing layer within the convolutional block could omit essential de-

tails in the feature representation. Furthermore, experiments were 

performed with IONet models comprising only stacked trans-

formers without a separate encoder. The performance improved 

as the number of stacked transformers increased. A model with 

three layers of transformers demonstrated a performance close to 

that of the extended DO IONet. 

5.2 Evaluation of long-term inertial data 
The long-term evaluation results for each model are listed in  

Table 1: Short-term evaluation results from 14 sequences 

Item trajectory RMSE (m) orientation RMSE (degree) Three-dimension translation 
vector (m) 

6-axis IONet [31] 0.458 9.542 0.0127 
9-axis IONet [32] 0.344 8.4195 0.0106 

DO IONet [33] 0.776 7.7245 0.0150 
1 Convolutional block 

+ 2-layers LSTM 0.821 8.329 0.0160 

1 Convolutional block 
+ 2-layers GRU 0.808 8.149 0.0155 

1 Convolutional block 
+ 1 Transformer block 0.971 10.873 0.0199 

Extended DO IONet 
1 Convolutional block 
+ 2 Transformer block 

0.734 6.816 0.0131 

2 Convolutional block 
+ 2-layers LSTM 1.066 13.260 0.0225 

2 Convolutional block 
+ 2-layers GRU 1.507 14.461 0.0267 

2 Convolutional block 
+ 1 Transformer block 1.653 13.068 0.0271 

2 Convolutional block 
+ 2 Transformer block 1.317 12.594 0.0254 

1 Transformer block 0.858 8.797 0.0181 
2 Transformer block 0.735 7.323 0.0152 
3 Transformer block 0.730 7.279 0.0148 
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Table 2. The RMSE of the trajectory included errors from previ-

ous time points as the estimation time increased, resulting in di-

vergence for all IONet models. The orientation RMSE of existing 

frameworks diverged because they relied on the integration of the 

initial values to output the final pose. However, the models that 

utilized the DO IONet framework exhibited values similar to 

those of the short-term results. Consequently, based on the 3D 

translation vector, calculated as the product of the position 

change and orientation, models that utilized the novel framework 

with accurate orientation values generally performed better. 

In the case of the encoder, as demonstrated by the previous 

results, missing features and higher errors resulted from the 

stacking of additional convolutional blocks. Some models that 

only comprised transformers experienced increased errors de-

spite being more stacked. In the long-term evaluation, the 9-axis 

IONet exhibited the lowest trajectory RMSE. However, the 

RMSE of the extended DO IONet orientation was approximately 

73% and 11% lower than that of the 9-axis IONet and DO IONet, 

respectively. Furthermore, the RMSE of the extended DO IONet 

3D translation vector was approximately 53% and 5% lower than 

that of the 9-axis IONet and DO IONet, respectively. 

5.3 Discussion 
The existing IONet and proposed DO IONet frameworks ex-

hibited different characteristics. The existing frameworks contin-

uously integrated changes from the initial position and orienta-

tion, resulting in relatively small trajectory estimation errors in 

the short term. However, the 3D translation vector diverged ow-

ing to uncorrectable orientation errors after several tens of sec-

onds. Therefore, although existing frameworks were utilized for 

short-term trajectory estimation with a single IMU, they did not 

fully exploit the advantages of IMUs in small-scale odometry for 

orientation estimation. Conversely, the DO IONet framework 

also estimated position changes; however, the orientation was 

output in the reference coordinate system. This enabled relative 

position estimation regardless of the current orientation, pro-

vided the initial position was known. Consequently, it can be uti-

lized as part of a sensor-fusion odometry system or as a comple-

mentary metric for the current pose. Therefore, the DO IONet 

framework offered high scalability and flexibility, making it ef-

fective for various practical applications. 

We conducted experiments to determine the optimal design for 

the encoder and decoder within the DO IONet framework. For 

the encoder, we investigated performance based on the number 

of convolutional blocks, with each block comprising two 

Table 2: Long-term evaluation results from 14 sequences 

Item trajectory RMSE (m) orientation RMSE (degree) Three-dimension translation  
vector (m) 

6-axis IONet [31] 1.602 28.385 0.0356 
9-axis IONet [32] 1.044 24.842 0.0354 

DO IONet [33] 3.153 7.671 0.0172 
1 Convolutional block 

+ 2-layers LSTM 4.108 9.178 0.0199 

1 Convolutional block 
+ 2-layers GRU 3.391 8.580 0.0185 

1 Convolutional block 
+ 1 Transformer block 4.564 13.406 0.0258 

Extended DO IONet 
1 Convolutional block 
+ 2 Transformer block 

2.885 6.790 0.0164 

2 Convolutional block 
+ 2-layers LSTM 4.607 14.369 0.0251 

2 Convolutional block 
+ 2-layers GRU 5.671 13.794 0.0269 

2 Convolutional block 
+ 1 Transformer block 41.509 15.225 0.1477 

2 Convolutional block 
+ 2 Transformer block 5.071 12.313 0.0260 

1 Transformer block 4.295 9.688 0.0233 
2 Transformer block 2.991 7.318 0.0178 
3 Transformer block 3.278 7.288 0.0183 
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convolutional layers. Models with only one convolutional block 

outperformed those with two blocks, indicating that excessive 

convolutional layers could diminish sequential features. We ex-

amined the performance of different decoders, including LSTM, 

GRU, one transformer, and two transformers. Models with trans-

former blocks, commonly utilized for feature extraction in time-

series data, demonstrated improved performance regardless of 

the estimation time. This suggests that transformers can be 

stacked to enhance performance and serve as a viable alternative 

to recurrent networks. Finally, we examined performance based 

on the number of transformers to determine whether the perfor-

mance improved by increasing the number of stacked transform-

ers. Models with two transformer blocks outperformed those 

with only one, whereas the performance difference between 

models with three stacked transformers and those with two 

stacked transformers was minimal. 

6. Conclusion
This study proposed an extended DO IONet that improved the 

estimation performance of the orientation and 3D translation vec-

tors. Experiments were performed with two encoders based on 

the depth of the convolutional blocks and four decoders for se-

quential data learning to design the optimal model within the DO 

IONet framework. Moreover, experiments were performed with 

stacked transformers to improve the pose estimation perfor-

mance. The strengths and weaknesses of existing frameworks 

and the proposed DO IONet framework were compared experi-

mentally by considering three evaluation metrics. 

The proposed model could be integrated with a camera, Li-

DAR, and other multisensory odometry systems to enhance the 

pose estimation performance and convenience. Moreover, it 

could be utilized to improve navigation systems, such as the GPS, 

for large-scale navigation. Studies on large-scale navigation, 

such as the GPS and indoor navigation systems, have continu-

ously improved and offered high precision, small-scale naviga-

tion systems, such as the proposed DO IONet system. However, 

these systems require expensive equipment and often involve 

ambiguous evaluation criteria. Studies on detailed operational 

validation and measurement-related technologies are limited for 

problems in commercial applications. These technologies, in-

cluding the proposed approach, are expected to be commercial-

ized in the future by providing robot-assisted services in 

healthcare, medical devices, cooking, and other expert services. 

Therefore, this study explored precise motion estimation based 

on cameras and multiple IMUs to acquire data similar to the 

manner in which humans perceive positional changes in the en-

vironment. 
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