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Abstract: Ports are crucial infrastructure in the global supply chain, and the digitalization and automation of ports have been recently 

promoted worldwide. Container terminals face increasing competition owing to expanding ships and increasing container throughput. 

Quay area container cranes are the key equipment for container loading and unloading; however, their level of automation is lower 

than those of yard cranes and automated guided vehicles (AGVs). Additionally, they have persistent issues such as variations in work 

speed depending on the operator's skill, potential human error, and the time and cost required for training and education to generate 

skilled personnel. This study designed a deep learning-based container crane control model to predict the input force values applied to 

the trolley and hoist to move a container to the target position, when its initial position, target position, and weight are provided. We 

designed a container crane simulator that emulates a skilled operator handling a container. Data on the trolley and hoist force values 

were collected for 1,008 cases with different initial positions, target positions, and weights. The recurrent neural network, long short-

term memory, and gated recurrent unit (GRU) models were designed to learn the relationship between the target trajectory of the 

container and the input force values of the trolley and hoist. These values were predicted for three different vessel operation scenarios 

with different initial positions, target positions, and weights to evaluate the model performance. The GRU container crane control 

learning model exhibited high prediction accuracy for the input force values of the trolley and hoist. A dynamic simulation confirmed 

that the container crane could be controlled to move from the initial to the target position. 

Keywords: Automated container terminal, Container crane automation, Deep learning, LSTM, GRU, Force prediction 

 
 

1. Introduction 
While ports have traditionally been considered as the elements 

of the global supply chain, recent uncertainties in external condi-

tions have caused a paradigm shift, identifying ports as a critical 

infrastructure. As a pivotal junction between maritime and inland 

transportation, ports are crucial in the overall operation of the 

global supply chain. The global smart port market is projected to 

grow from $19 billion in 2022 to $57 billion in 2027 [1]. 

Major ports worldwide have embraced the digitization, auto-

mation, and smartification of their operations. Port automation, a 

key aspect of smart ports, is mainly applied to container termi-

nals. Domestically, container terminals have witnessed a rapid 

increase in yard occupancy rates owing to the enlargement of 

vessels and inadequate berth conditions caused by rising con-

tainer traffic. Furthermore, the emergence of Northeast Asia as 

the epicenter of global trade has intensified the competition 

among nations, including China, to rapidly expand port facilities. 

To secure a competitive edge, global terminal operators continu-

ously invest in various technologies based on the Fourth Indus-

trial Revolution, aiming to optimize operational systems and au-

tomate equipment to enhance productivity. 

The competitiveness of container terminals depends on the 

speed of processing the containers to increase productivity. This 

involves handling containers from the ship to the quay or vice-

versa, and the equipment responsible for transferring containers 

between the quay and yard. Current automation technologies for 

container terminals focus on automating yards and transferring 

operations to ensure seamless coordination. 

However, the automation level of container cranes, a critical 

component of quay areas, remains relatively inadequate. While 

attempts have been made to automate the loading and unloading 

operations using container cranes, the complete exclusion of 
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human operators has not been achieved. Currently, operators ei-

ther board the crane cabin directly or control the trolley and hoist 

remotely from a control room. Consequently, the task is subject 

to variations in the operation speed based on the operator's profi-

ciency. However, human error is probable, and the time and cost 

constraints associated with the training of skilled operators pose 

significant limitations. These challenges affect the productivity 

of container terminals and the dwell time of vessels in ports. 

Thus, crane automation is crucial, necessitating innovative tech-

nologies and solutions to overcome these limitations. 

Existing studies on cranes can be categorized into dynamic 

modeling performed in three-dimensional space and control 

model design to minimize the sway and energy consumption dur-

ing cargo movement. Yu et al. [2] proposed a composite nonlin-

ear feedback control for overhead cranes to improve the crane 

control performance and stability. Furthermore, Ismail et al. [3] 

introduced sliding mode control to ensure control performance 

and robustness in the presence of external interference during 

maritime container crane operations. Lu et al. [4] presented a 

path-planning method for minimizing energy consumption while 

controlling the horizontal motion of a double-pendulum crane 

system. 

Although these research efforts have focused on minimizing 

cargo sway, skewness, and energy consumption, studies related 

to models that learn crane control methods for moving cargo, 

such as containers, to specific locations are limited. This study 

addresses this gap by developing a learning model to predict the 

input forces on the trolley and hoist that shift containers of vari-

ous weights from their initial positions to target locations when 

both these positions are provided. 

The remainder of this paper is organized as follows: Section 2 

briefly describes the container crane and its dynamic model used 

in this study. Section 3 discusses the design of the proposed con-

tainer crane control learning model using deep learning. Section 

4 uses simulation to evaluate the prediction results of the de-

signed recurrent neural network (RNN), long short-term memory 

(LSTM), and gated recurrent unit (GRU) models. Section 5 con-

cludes the study. 

2. Theoretical Background

2.1 Container Crane 
Container cranes, also known as quay or ship-to-shore cranes, 

are container-handling equipment employed in loading and un-

loading operations (vessel operations) when a container vessel 

docks at a terminal. These cranes facilitate the transfer of con-

tainers between the vessel and berth. Their productivity, which is 

a crucial component of container terminals, is measured as the 

number of containers handled per hour. These cranes can process 

between 25 and 30 containers per hour—a metric that signifi-

cantly influences the overall productivity of a container terminal. 

The container crane structure comprises the crane body, which 

moves along the rails installed on the apron, a folding boom ex-

tending from the body toward the vessel, girders extending from 

the body toward the apron, a trolley for the horizontal movement 

along the installed rails, a hoist connected to the trolley for the 

vertical movements of containers, a control room, and devices, 

such as spreaders, attached to the end of the hoist rope for lifting 

and lowering containers. 

Figure 1: Vessel operation at quay area 

Figure 1 shows the layout of the quay area where vessel oper-

ations using container cranes occur. The container crane transfers 

the containers from the yard to the apron before lifting and mov-

ing them toward the vessel. Thereafter, the crane performs load-

ing operations by lowering the containers to specified locations 

within the vessel or unloading operations by picking up contain-

ers from the vessel, moving them toward the apron, and lowering 

them to their designated positions on the apron or waiting 

transport vehicles. The container crane operator is responsible for 

configuring and controlling the container trajectory, managing 

oscillations and skewness, and preventing collisions between the 

crane, vessel, and other cranes, thereby ensuring the safe and ef-

ficient execution of the operation. 
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2.2 Dynamic Model of a Container Crane 
A dynamic model is employed to simulate container crane 

movements and transport container oscillations during vessel op-

erations. This model focuses only on the movements of the trol-

ley and hoist, which influence the container loading and unload-

ing operations. The movement of the crane along the rails in-

stalled on the apron is not considered, and the oscillations of the 

container are assumed to occur only in the two-dimensional 

space formed by the movement of the trolley and vertical line. 

Figure 2: Plane model of a container crane 

Figure 2 shows the plane model of a container crane and its 

load (container), where 𝑥𝑥, 𝑙𝑙, 𝜃𝜃 are the horizontal position of the 

trolley, distance from the trolley to the container center, and 

swing angle, respectively. The load is considered as a point mass, 

and the mass and stiffness of the hoisting rope and the effects of 

wind disturbance are neglected. Subsequently, the equation of 

motion of the container crane system is obtained as follows 

[5][6]:  

(𝑚𝑚𝑥𝑥 + 𝑚𝑚)�̈�𝑥 + 𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃�̈�𝜃 + 𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑙𝑙̈+ 𝑑𝑑𝑣𝑣𝑥𝑥�̇�𝑥 

+2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑙𝑙�̇̇�𝜃 − 𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃�̇�𝜃2 = 𝑓𝑓𝑥𝑥 
(1) 

(𝑚𝑚𝑙𝑙 + 𝑚𝑚)𝑙𝑙 ̈+ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃�̈�𝑥 + 𝑑𝑑𝑣𝑣𝑙𝑙𝑙𝑙 ̇ − 𝑚𝑚𝑙𝑙�̇�𝜃2 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃 = 𝑓𝑓𝑙𝑙  (2) 

𝑚𝑚𝑙𝑙2�̈�𝜃 + 𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃�̈�𝑥 + 2𝑚𝑚𝑙𝑙𝑙𝑙�̇̇�𝜃 + 𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃 = 0 (3) 

Equations (1), (2), and (3) represent the dynamics of the trol-

ley, hoist, and container oscillations, respectively. Here, 𝑚𝑚, 𝑚𝑚𝑥𝑥, 

and 𝑚𝑚𝑙𝑙 are the weights of the container, trolley, and hoist, respec-

tively; 𝑓𝑓𝑥𝑥  is the force applied to the trolley in the 𝑥𝑥-direction and 

𝑓𝑓𝑙𝑙   denotes the force applied to the hoist in the 𝑙𝑙 -direction; 𝑑𝑑𝑣𝑣𝑥𝑥 

and 𝑑𝑑𝑣𝑣𝑙𝑙 are the viscous damping coefficients associated with the 

motions along the 𝑥𝑥 - and 𝑙𝑙 -directions, respectively; 𝑚𝑚  denotes 

the gravitational acceleration. 

Based on these equations, the second-order nonlinear coupled 

differential equations for the dynamic energies of the trolley and 

hoist are defined as follows: 

�̈�𝑥 = −
𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃�̈�𝜃
(𝑚𝑚𝑥𝑥 + 𝑚𝑚) −

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑙𝑙̈
(𝑚𝑚𝑥𝑥 + 𝑚𝑚) −

𝑑𝑑𝑣𝑣𝑥𝑥�̇�𝑥
(𝑚𝑚𝑥𝑥 + 𝑚𝑚) 

−
2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑙𝑙�̇̇�𝜃
(𝑚𝑚𝑥𝑥 + 𝑚𝑚) +

𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃�̇�𝜃2

(𝑚𝑚𝑥𝑥 + 𝑚𝑚) +
𝑓𝑓𝑥𝑥

(𝑚𝑚𝑥𝑥 + 𝑚𝑚)

(4) 

𝑙𝑙 ̈ = −
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃�̈�𝑥

(𝑚𝑚𝑙𝑙 + 𝑚𝑚) −
𝑑𝑑𝑣𝑣𝑙𝑙𝑙𝑙 ̇

(𝑚𝑚𝑙𝑙 + 𝑚𝑚) 

+
𝑚𝑚𝑙𝑙�̇�𝜃2

(𝑚𝑚𝑙𝑙 + 𝑚𝑚) +
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃

(𝑚𝑚𝑙𝑙 + 𝑚𝑚) +
𝑓𝑓𝑙𝑙

(𝑚𝑚𝑙𝑙 + 𝑚𝑚)

(5) 

�̈�𝜃 = −
𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃�̈�𝑥
𝑙𝑙 −

2𝑙𝑙�̇̇�𝜃
𝑙𝑙 −

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃
𝑙𝑙 (6) 

2.3 Literature Review 
Lee [5] proposed a novel dynamic model for overhead cranes 

in a three-dimensional space based on previous studies on over-

head cranes in a two-dimensional space. A two-degree-of-free-

dom swing angle was defined and used to derive a nonlinear dy-

namic model of the crane.  

Lei et al. [7] designed a dynamic model to capture the three-

dimensional motion of a spreader based on the movements of the 

trolley and hoist of a container crane. Using Lagrange’s equa-

tions, they obtained a four-degrees-of-freedom dynamic model in 

the generalized coordinates of the spreader whose motion was 

analyzed with respect to the distance from the trolley to the con-

tainer center and its acceleration. 

Ismail et al. [3] proposed a sliding-mode control method that 

considered external interference during maritime container crane 

operations. LQR was used to determine the sliding surface, and 

a sliding-mode controller was designed to induce and maintain 

the state trajectory of the system on the sliding surface. Simula-

tions demonstrated a reduction in the interference effects caused 

by strong waves and winds during maritime operations. 
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Lu et al. [4] focused on horizontal motion control and mini-

mized the energy consumption of a double-pendulum crane sys-

tem. A control problem was formulated based on the dynamic 

model of a crane system and an energy consumption function was 

defined. The control problem was discretized using quadratic 

programming, and the effectiveness of the proposed planning 

method was demonstrated using hardware experiments. 

Zhang et al. [8] designed a PID-based control model for over-

head crane position control and sway suppression under uncer-

tain conditions. The parameters were adjusted according to 

LaSalle's invariance principle to ensure the Lyapunov stability. 

Experiments with actual cranes validated the robustness of the 

proposed approach against nonzero conditions and external inter-

ference. 

Wang et al. [9] developed an intelligent optimization technol-

ogy based on artificial neural networks for nonlinear overhead 

crane control. This method eliminated the requirement of an ini-

tial stabilization phase and conveniently executed adaptive con-

trol based on the developed update rules.  

Zhang et al. [10] addressed the overhead crane control prob-

lem using an online reinforcement learning algorithm, called pas-

sivity-based online deterministic policy gradient. The neural net-

work rules were updated to ensure system stability during learn-

ing by analyzing the energy of an overhead crane system.  

Zhang et al. [11] addressed the problem of handling various 

cargo weights in overhead crane control using a deep reinforce-

ment learning algorithm, called domain randomization memory-

augmented beta proximal policy optimization (DR-MABPPO). 

The control problem was formalized as a latent Markov decision 

process that captured the cargo weight changes as latent varia-

bles. Domain randomization enabled the learning algorithm to 

explore a range of cargo weights. Introducing a beta distribution 

addressed the action-range issues, ensuring compliance with the 

physical constraints. Simulations confirmed that DR-MABPPO 

could learn a versatile control policy for handling cargo of vari-

ous weights. 

Previous research on crane dynamics, control models, and 

learning models primarily focused on minimizing the sway and 

energy consumption in overhead crane systems. However, there 

is a notable gap in the research on learning models for controlling 

the container trajectories. Therefore, this study designed a deep 

learning model to predict the trolley and hoist input force values. 

This enabled the movement of containers from initial positions to 

target locations, considering diverse cargo weights and trajectories. 

3. Container Crane Control Learning Model
In this section, a deep learning-based container crane control 

learning model is designed to predict the input values of forces 

exerted on the trolley and hoist while moving the containers of 

varying weights from the given initial positions to target posi-

tions. 

3.1 Deep Learning Model 
Deep learning or hierarchical learning is defined as a set of 

machine learning techniques based on artificial neural networks, 

which combine various nonlinear transformation methods to 

summarize the crucial content or functionalities within large da-

tasets or complex information. The deep learning model in Fig-

ure 3 consists of input and output layers, with hidden layers 

placed between them. Each layer contains multiple nodes corre-

sponding to an individual perceptron. Nodes within a specific 

layer are interconnected by those from the preceding and suc-

ceeding layers, and the weights represent the activation levels of 

these connections. 

Figure 3: Basic structure of a deep learning model 

RNN is a type of artificial neural network that connects the 

cells within the hidden layer and sends their outputs to the output 

layer. These outputs serve as inputs for the next computation 

within the hidden layer. This recurrent internal structure, which 

retains the information related to previous time-step results, is 

useful for learning time-dependent or sequential data. Although 

RNNs can sequentially process input data of various lengths, they 

have the limitation of diminishing information transfer from the 

initial to final stages as the input data length increases. This issue, 

known as the problem of long-term dependencies in RNNs, leads 

to information loss as the learning progresses and sequence 

lengthens. 
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Figure 4: Basic structure of an RNN 

LSTM, which is a variant of the RNN proposed by Hochreiter 

et al. [12], was designed to address the long-term dependency 

problem. The basic operation of LSTM mirrors that of the con-

ventional RNNs; however, the inclusion of the input, forget, and 

output gates within the cell enables it to resolve long-term 

memory loss problems. The input gate adjusts the input data, the 

forget gate determines the influence of the previous cell state us-

ing a sigmoid function ranging from 0 to 1, and the output gate 

modifies the input data by applying weighted values to each state. 

LSTM addresses the long-term dependency problem by allowing 

the cell to forget a certain amount of previous cell state data via 

the forget gate and update the current cell state by multiplying 

the previous output value and current input value based on the 

input gate output. 

Cho et al. [13][14] proposed GRU, which is a simplified ver-

sion of LSTM. In GRU, the update gate replaces the forget and 

input gates of LSTM. A reset gate is included to determine the 

part of the hidden layer cell, resulting from the previous time 

step, which is the output. 

(a) LSTM 

(b) GRU 

Figure 5: Inner structure of individual LSTM and GRU cells 

3.2 Model Architecture 
The designed deep learning-based container crane control learn-

ing model is structured into two phases, as shown in Figure 6. 

1) Generation of Container Target Trajectory

The model generates the target movement path of the container 

from its initial position to its destination, that is, it calculates the 

time-dependent travel distances of the trolley and hoist when a 

container is moved, thereby minimizing the transportation time. 

Figure 6: Container crane control learning model 
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2) Prediction of Trolley and Hoist Force Input Values

Subsequently, a deep learning model was designed to predict 

the trolley and hoist input force values based on the target move-

ment path and container weight. The container crane control 

learning models were developed using the RNN, LSTM, and 

GRU models. Subsequently, the model demonstrating the best 

performance, confirmed using performance evaluation simula-

tions, was identified. 

3.3 Data Collection 
As shown in Figure 7, a container crane simulator was de-

signed to emulate the control method employed by skilled oper-

ators to move containers to their target positions. The simulator 

incorporated the container crane dynamic model described pre-

viously and used a real-time PID controller to manipulate the 

trolley and hoist input force values, thereby replacing the role of 

the operator in moving the container. 

Given the container weight, initial position, and target destina-

tion of the container, the simulator generated the input force val-

ues to facilitate the container movement based on the following 

procedure: 

1) Setting the Target Values

The current and target positions of the container were deter-

mined. The distance traveled by the trolley and hoist of the con-

tainer within this range was measured. Based on operational 

specifications, including the acceleration, maximum speed, and 

deceleration of the trolley and hoist, the minimum time required 

to transport the container from the initial to the target position 

was calculated by setting the target trajectory of the container. 

The recorded positional information of the trolley and hoist for 

each time step was used as the setpoint variable for the PID con-

trol to determine their input force values.  

Figure 7: Container crane simulator 
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 During container-handling operations using a container crane, 

the container was assumed to be transported by lifting it from its 

initial position to a specified height to prevent collisions with 

other equipment, including containers, vessels, or cranes. Addi-

tionally, simultaneous movements of the trolley and hoist were 

assumed to expedite the handling operations, both attaining their 

respective maximum speeds concurrently. 

2) Output Measurement and Error Calculation

The output values of the inner dynamic model of the controlled 

object and container crane were measured based on the initial in-

put values. Figure 8 shows the block diagram of the dynamic 

model of a container crane. The model read 𝑓𝑓𝑥𝑥 and𝑓𝑓𝑙𝑙  from the in-

put ports and calculated �̈�𝑥 , 𝑙𝑙 ̈, and 𝜃𝜃 ̈  using the blocks X_2-dot, 

L_2-dot, and THETA_2-dot representing Equations (4)-(6), re-

spectively. The trolley position, distance from the trolley to the 

container center, and swing angle of the container were obtained 

as outputs. 

Subsequently, the process variables of the horizontal position 

𝑥𝑥 of the trolley and distance from the trolley to the container cen-

ter 𝑙𝑙 were compared with the target values, and the errors were 

calculated. 

3) Calculation of Control Input Values

Using the error values between the process and setpoint varia-

bles, the control input values, i.e., 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑙𝑙  were calculated. 

Subsequently, the container crane learning model was trained 

by generating and collecting data on the target trajectory of the 

container and the trolley and hoist input force values using the 

designed container crane simulator. The simulator was config-

ured using dynamic model parameters based on the specifications 

of an actual container crane. Figure 9 shows that the initial and 

destination positions were randomly selected within a specified 

range, considering the size, outreach, and backreach of the con-

tainer crane. The container weight was also selected randomly 

within a specified range based on the container weight infor-

mation loaded onto the container vessels. 

Figure 9: Selection range of the initial and target positions of 

the container 

Figure 8: Block diagram of the container crane dynamic model 
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Table 1: Selection range of the container weight 

Type Selection Range 
Empty 2,200kg 3,900kg 

Full 9,700kg 35,500kg 

In this study, 10,530 cases of data were collected, encompass-

ing different combinations of the initial position, destination, and 

container weight. These data were used to train the container 

crane control learning model. 

Table 2: Detailed configurations of the RNN, LSTM, and GRU 

models 

Model 
Hidden Layer 

Type Nodes 
Activation 
Function 

Optimize 
Function 

RNN 
1 SimpleRNN 1,024 

ReLU Adam 

2 SimpleRNN 512 
3 Dense 356 

LSTM 
1 LSTM 1,024 
2 LSTM 512 
3 Dense 356 

GRU 
1 GRU 1,024 
2 GRU 512 
3 Dense 356 

Table 2 lists the specifications of the container crane control 

learning models based on the designed RNN, LSTM, and GRU. 

Each learning model comprised a three-layer structure. They 

were configured as many-to-many models, with the target trajec-

tory of the trolley and hoist and container weight as input fea-

tures, and the trolley and hoist input force values as output fea-

tures. Additionally, a rectified linear unit was employed as the 

activation function for each hidden layer, and adaptive moment 

estimation served as the optimization function for the learning 

model. 

The collected training data were split into training and valida-

tion datasets in the ratio of 80:20, and the training process utilized 

the mean square error (MSE) as the loss function. The number of 

epochs and learning rate were set to 5000 and 0.0001, respec-

tively. However, to address the overfitting issues observed during 

training, the ModelCheckpoint feature was implemented to save 

the model at an epoch by minimizing the validation loss. These 

learning models were designed and trained using the Keras pack-

age within the TensorFlow library in Python. 

4. Performance Evaluation

4.1 Simulation Environment 

To evaluate the performances of the container crane control 

learning models, three vessel operation scenarios with varying 

initial positions, target positions, and container weights were de-

fined, as shown in Table 3.  

Scenario 1 represents the unloading operations, while Scenar-

ios 2 and 3 represent the loading operations. Scenarios 1 and 2 

focused on handling empty containers, whereas Scenario 3 in-

volved handling full containers. For each scenario, the input 

force values of the trolley and hoist predicted by the RNN-, 

LSTM-, and GRU-based container crane control learning models 

were compared with the values calculated using the container 

crane simulator. The normalized root mean square error 

(NRMSE) was used to evaluate the prediction accuracy. NRMSE 

is a standardized metric derived by dividing the root mean 

squared error (RMSE) with the difference between the maximum 

and minimum values of the actual data. Similar to RMSE, a lower 

NRMSE value indicates higher predictive accuracy, which has 

been used in various studies on deep learning prediction models 

[15][16][17][18]. 

Table 3: Vessel operation scenarios 

Scenario 
Initial 

Position 
Target 

Position 
Container 

Weight 
Scenario 1 (0m, 2.5m) (87.5m, 22.5m) 2,500kg 
Scenario 2 (72.5m, 27.5m) (7.5m, 2.5m) 3,700kg 
Scenario 3 (97.5m, 12.5m) (10m, 2.5m) 25,000kg 

4.2 Simulation Results 

Based on simulation results, the average NRMSE values for 

the RNN, LSTM, and GRU models were 0.018164, 0.015381, 

and 0.008362, respectively. All three models demonstrated high 

prediction accuracy. 

① In Scenario 1, the NRMSE value of the GRU model was

the lowest at 0.006656, followed by those of the LSTM

and RNN models at 0.013274 and 0.016513, respectively.

② In Scenario 2, the NRMSE value for the GRU model was

the lowest at 0.009527, followed by those of the LSTM

and RNN models at 0.013172 and 0.02076, respectively.

③ In Scenario 3, the NRMSE value of the GRU model was

the lowest at 0.02076, followed by those of the RNN and

LSTM models at 0.01722 and 0.019699, respectively.
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Table 4: Prediction results of the RNN, LSTM, GRU models 

Type 
𝑓𝑓𝑥𝑥 𝑓𝑓𝑙𝑙  Average 

Rank 
NRMSE NRMSE NRMSE 

Sce-
nario 

1 

RNN 0.013932 0.019093 0.016513 3 
LSTM 0.012299 0.014248 0.013274 2 
GRU 0.005784 0.007528 0.006656 1 

Sce-
nario 

2 

RNN 0.021949 0.01957 0.02076 3 
LSTM 0.014049 0.012294 0.013172 2 
GRU 0.010155 0.008898 0.009527 1 

Sce-
nario 

3 

RNN 0.013071 0.021368 0.01722 2 
LSTM 0.012832 0.026565 0.019699 3 
GRU 0.008366 0.009441 0.008904 1 

Figure 10: Comparison of prediction results 

The GRU model consistently outperformed in all the scenar-

ios, confirming its effectiveness in predicting the input force val-

ues of the trolley and hoist to move the containers of various 

weights to the target position, as shown in Figure 10. Figure 11 

compares the prediction results of the GRU model and simulator 

results for each scenario. GRU resolved the issue of long-term 

dependencies while maintaining a more compact structure, 

thereby accelerating training and prediction. This can be at-

tributed to the streamlined architecture of the model, which is 

less sensitive to unnecessary details and facilitates the learning 

of more general patterns.  

Furthermore, dynamic simulations were conducted for each 

scenario to assess the control performance of the GRU container 

crane control learning model. Particularly, the trolley and hoist 

input force values predicted by the GRU model were used as the 

input values for the container crane dynamic model, and it was 

verified whether the container moved to the intended target posi-

tion.  

(a) Scenario 1 

(b) Scenario 2 

(c) Scenario 3 

Figure 11: Comparison of the GRU model and simulator results 

(a) Scenario 1 

(b) Scenario 2 

(c) Scenario 3 

Figure 12: Trolley and hoist trajectory in each scenario 
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Table 5: Dynamic simulation results of the GRU model 

Type 
Target 

Position 
Final 

Position Error 

x(m) y(m) x(m) y(m) x(m) y(m) 

Scenario 
1 87.5 22.5 87.435 22.418 0.065 0.082 

Scenario 
2 7.5 2.5 7.353 2.403 0.147 0.097 

Scenario 
3 10 2.5 10.092 2.625 0.092 0.125 

Figure 12 shows the trolley and hoist trajectories in each sce-

nario, where the input force values predicted by the GRU model 

were the dynamic model input values. As shown in Table 5, the 

dynamic simulation results of the GRU container crane control 

learning model indicated that the final x-axis position error of the 

container was within 0.1 m for Scenarios 1 and 3 and 0.2 m for 

Scenario 2. Additionally, the y-axis position error was within 0.1 

m for Scenarios 1 and 2 and 0.2 m for Scenario 3. 

5. Conclusions
This study designed a deep learning-based container crane 

control model to predict the forces required for moving contain-

ers of various weights to their destination positions when their 

initial and target locations are provided. Initially, a container 

crane simulator resembling the maneuvering techniques em-

ployed by skilled operators was devised. Subsequently, a simula-

tor was used to obtain the dataset comprising 10,530 instances 

with different container weights, initial and target positions, and 

input force values of the trolley and hoist. The learned model 

used this dataset to establish the relationship between the con-

tainer trajectory, weight, and trolley/hoist force inputs. 

To evaluate the model performance, the force inputs were pre-

dicted in three distinct ship operation scenarios, each involving 

different initial container positions, target locations, and weights. 

The simulation results demonstrated that the designed deep learn-

ing-based container crane control learning model exhibited high 

prediction accuracy in various ship operation scenarios. Compar-

ing the performances of the RNN, LSTM, and GRU models re-

vealed that the GRU model consistently exhibited the highest 

prediction accuracy.  

This research departs from previous studies that primarily fo-

cused on automating key functionalities within the container 

crane system, such as controlling container sway and skew. In-

stead, the emphasis is on designing a deep learning model for 

learning container movement path control. 

Additionally, dynamic simulations were performed for the 

GRU model, confirming its ability to move the container to the 

intended position within an error of 0.2 m in all scenarios. How-

ever, real-world crane operations require fine-tuned position ad-

justments. Therefore, the application of the proposed model in 

actual container handling tasks necessitates research on improv-

ing the accuracy of predicting the trolley and hoist input force 

values. 

The potential applications of this model to automated con-

tainer crane control contribute to its significance. The model 

holds promise for developing programs aimed at training and ed-

ucating container crane operators. 
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