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Abstract: Previous studies have focused on the problem of sloshing, and coupling with body motion has only been conducted using a 

single-mode dominant method. Moreover, although the problem of secondary resonance induced by an internal fluid with sufficiently 

deep tank depths has been studied using the two-mode dominant method, sloshing below critical tank depths requires considerable 

research. This study investigated the two-dimensional horizontal motion of two rectangular boxes, including the internal flow. The 

hydrodynamic coefficients were calculated using the constant panel method, and the effect of the internal fluid was calculated using a 

multimodal method based on the Bateman-Luke variational principle. Consequently, the characteristics of the internal fluid motion 

were categorized based on the ratio of the internal fluid depth(h) to the tank length(l). For h/l values below the critical depth ratio 

(approximately 0.337 for a rectangular water tank), the single-mode dominant method was considered inappropriate for precisely de-

scribing the sloshing phenomenon. Therefore, the aim of this study was to develop higher-order multimodal methods. The numerical 

results were compared with previous experimental data. Furthermore, a parametric study of modal damping was conducted. 

Keywords: Sloshing; Two floating barges, Two-dimensional horizontal motion, Finite-depth liquid tank, Multi-modal method; Modal 

damping 

 
 

1. Introduction 
Sloshing is a classic area of fluid dynamics that has been stud-

ied extensively. In the 2000s, as the demand for liquefied natural 

gas (LNG)-related ships and offshore structures rapidly in-

creased, considerable research on the effects of sloshing loads on 

hull motion was conducted [1]-[3]. This is because, in contrast to 

traditional LNG carriers, loading and unloading operations are 

conducted at sea, and as the water level inside the tanks varies, 

the effects of sloshing have a significant impact on ship motion. 

In particular, for membrane-type LNG carrier vessels, the ship 

and tank widths had similar values. The effects of ship motion on 

sloshing have been closely studied because the natural periods of 

a ship's horizontal and sloshing modes are similar. 

Regarding numerical methods, several in-house code develop-

ment studies based on OpenFOAM and application studies using 

the StarCCM have been conducted [4]-[9]. They are based on the 

Navier-Stokes equations and have the disadvantage of requiring 

considerable computation time, although hardware has improved 

drastically in recent years. However, few studies have attempted 

to interpretatively solve this problem using this potential. 

Faltinsen et al. analytically approached the sloshing problem 

by formulating a multimodal method using the Bateman–Luke 

minimum energy principle [10]-[11]. They studied single- and 

two-mode-dominant methods by varying the number of domi-

nant sloshing modes [12]. However, these studies focused on the 

problem of sloshing, and coupling with body motion was only 

conducted using a single-mode-dominant method. Therefore, 

higher-order methods were not applied to the coupling problem, 

and were only applied to the internal flow. In addition, the prob-

lem of secondary resonance induced by an internal fluid with suf-

ficiently deep tank depths has been studied by introducing a two-

mode dominant method. However, sloshing below critical tank 

depths still requires considerable research. 

The aim of this study was to establish a higher-order multi-

modal method for one-degree-of-freedom horizontal motion and 

apply it to a floating body-internal flow coupling analysis me-
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thod. The developed method was applied to the problem of the 

effect of sloshing flow on the horizontal motion of two rigidly 

connected rectangular floating bodies [13]-[16]. The effect of 

varying the modal damping value on the results was also investi-

gated, and the results were compared with existing experimental 

results. 

The coefficients of the dynamic fluid forces were obtained by 

the boundary element method using the wave Green function 

[17]-[18], which was extended to a time-domain analysis using 

the convolution function [19]. The external force caused by the 

sloshing flow was modeled using a multimodal method [11]. 

Coupling analysis was performed by repeatedly delivering the 

displacement of the floating body and the sloshing force into each 

governing equation. Consequently, the time integration method 

was implemented using the fourth-order Runge-Kutta method. 

The calculated time-series results were then converted to a trans-

fer function (motion driven by the external wave amplitude) in 

the frequency domain by extracting only the displacement of the 

motion from the steady state through the transition zone. 

The remainder of this paper is organized as follows. In Section 

2, we briefly summarize the mathematical formulations, includ-

ing the external and internal flow models, higher-order multi-

modal method expansion, and coupling. Section 3 constitutes the 

numerical results obtained using established techniques, a com-

parison with previous experimental results, and the effects of ad-

justing the damping coefficients. The conclusions are presented 

in Section 4. Finally, the governing equations for each sloshing 

mode in the three-mode dominant method are provided in the 

Appendix. 

2. Coupling between Floater and Sloshing
The sway motion in the time domain may be expressed as fol-

lows.  

(𝑀𝑀 + 𝐴𝐴22(∞))�̈�𝜂2 + 𝐵𝐵22𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�̇�𝜂2|�̇�𝜂| + ∫ ℎ22(𝜏𝜏)�̇�𝜂2
𝑡𝑡
0 (𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏 =

𝐹𝐹2𝑒𝑒𝑒𝑒𝑣𝑣 + 𝐹𝐹2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐹𝐹2𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣             (1) 

where 𝑀𝑀 is the structural mass of the floating body, 𝐴𝐴22(∞) is 

the sway added mass at infinite frequency, 𝐵𝐵22𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the wave vis-

cous damping coefficient, ℎ22(𝑡𝑡)  is the time-memory function 

obtained using the wave excitation damping coefficient, and 

𝐹𝐹2𝑒𝑒𝑒𝑒𝑣𝑣, 𝐹𝐹2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝐹𝐹2𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣𝑓𝑓𝑡𝑡 are the wave excitation force, slosh-

ing force, and friction, respectively, from the tank rail acting 

against the motion. Detailed explanations of these methods are 

provided elsewhere [10]. 

Here, the force due to sloshing was derived from the Bateman-

Luke variational principle, which is based on the minimum prin-

ciple of pressure variation. The governing equations for internal 

flow can be expressed using the following tensor equations [11]: 

∑ 𝛽𝛽𝑡𝑡′′�𝛿𝛿𝑡𝑡𝑎𝑎 + ∑ 𝛽𝛽𝑏𝑏𝐷𝐷1𝑎𝑎(𝑎𝑎, 𝑏𝑏)𝑁𝑁
𝑏𝑏=1 +𝑁𝑁

𝑡𝑡=1

∑ ∑ 𝛽𝛽𝑏𝑏𝛽𝛽𝑣𝑣𝐷𝐷2𝑎𝑎(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)𝑏𝑏
𝑣𝑣=1

𝑁𝑁
𝑏𝑏=1 � +

∑ ∑ 𝛽𝛽𝑏𝑏′𝛽𝛽𝑣𝑣′𝑇𝑇0𝑎𝑎(𝑎𝑎, 𝑏𝑏)𝑡𝑡
𝑏𝑏=1

𝑁𝑁
𝑡𝑡=1 +

∑ ∑ ∑ 𝛽𝛽𝑏𝑏′𝛽𝛽𝑡𝑡′𝛽𝛽𝑣𝑣𝑇𝑇1𝑎𝑎(𝑎𝑎,𝑏𝑏, 𝑐𝑐)𝑁𝑁
𝑣𝑣=1

𝑡𝑡
𝑏𝑏=1

𝑁𝑁
𝑡𝑡=1 + 2𝜉𝜉𝑎𝑎𝜎𝜎𝑎𝑎𝛽𝛽𝑎𝑎′ +

𝜎𝜎𝑎𝑎2 𝛽𝛽𝑎𝑎 = 𝐾𝐾�𝑎𝑎(𝑡𝑡),        m=1,2,....,    N → ∞   (2) 

where, 

𝐾𝐾�𝑎𝑎(𝑡𝑡) = 𝐾𝐾𝑚𝑚(𝑡𝑡)
𝑙𝑙

= −𝑃𝑃𝑣𝑣 �
𝜂𝜂2′′(𝑡𝑡)
𝑙𝑙
�   (3) 

𝑃𝑃𝑎𝑎 = 2
𝑎𝑎𝑚𝑚

𝑡𝑡𝑎𝑎𝑡𝑡ℎ(𝜋𝜋𝜋𝜋 ℎ
𝑙𝑙
)((−1)𝑎𝑎 − 1)   (4) 

𝑆𝑆𝑎𝑎 = 2𝑙𝑙
𝑎𝑎𝑚𝑚

𝑡𝑡𝑎𝑎𝑡𝑡ℎ( 1
2
𝜋𝜋𝜋𝜋 ℎ

𝑙𝑙
)   (5) 

where 𝛽𝛽𝑣𝑣  is the i-th generalized sloshing mode for calculating 

the sloshing force, 𝛿𝛿𝑡𝑡𝑎𝑎  is Kronecker Delta, 𝜎𝜎𝑎𝑎   is the sloshing 

natural frequency, 𝜉𝜉𝑎𝑎 is the viscous damping coefficient for in-

ternal flow, and  𝐾𝐾�𝑎𝑎(𝑡𝑡) is the external force owing to the sloshing 

flow. The coefficients (𝐷𝐷1,𝐷𝐷2,𝑇𝑇0,𝑇𝑇1) are determined by the wa-

ter level and length inside the tank, and their relationship and der-

ivation are described in detail in a previous study [11]. Further, 

𝜂𝜂2 is the sway motion of the tank, 𝑙𝑙 is the tank length, ℎ is the 

tank water depth, and 𝑔𝑔 is the gravitational acceleration. 

In this study, a three-mode dominant method was developed 

based on the assumption that all three modes were dominant 

when using a multimodal method to describe the internal flow. 

Therefore, the number of dominant sloshing modes increases to 

three. 

𝛽𝛽1 = 𝑂𝑂(𝜀𝜀1/3),  𝛽𝛽2 = 𝑂𝑂(𝜀𝜀2/3),  𝛽𝛽3 = 𝑂𝑂(𝜀𝜀1),  𝜀𝜀 = 𝜂𝜂𝑡𝑡/𝑙𝑙       (6) 

𝛽𝛽1~ 2 = 𝑂𝑂(𝜀𝜀1/3),  𝛽𝛽3~6 = 𝑂𝑂(𝜀𝜀1)      (7) 

𝛽𝛽1~ 3 = 𝑂𝑂(𝜀𝜀1/3),  𝛽𝛽4~ 9 = 𝑂𝑂(𝜀𝜀1) (8) 

Equations (6) and (7) are the magnitudes of the sloshing 

modes in the single- and two-mode dominant methods estab-

lished in a previous study, and Equation (8) is an assumption of 

the magnitudes developed in this study. Substituting Equation 
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(8) into Equation (2) and removing the higher-order terms yields 

the governing equation. The final governing equation of the gen-

eralized sloshing modes for the internal flow, assuming three 

dominant sloshing modes, was introduced in a previous study 

[20] and is presented in the Appendix.  

The viscous damping for a sloshing flow is based on Keule-

gan's model [21]. 

𝜉𝜉 = √𝑇𝑇𝑣𝑣
2𝐿𝐿𝑇𝑇𝑚𝑚3/2 [(𝜋𝜋 + 𝐿𝐿𝑇𝑇𝑘𝑘) + 𝐿𝐿𝑇𝑇𝑡𝑡(𝑚𝑚−2𝑡𝑡ℎ)

𝑣𝑣𝑣𝑣𝑡𝑡ℎ(2𝑡𝑡ℎ)
]   (9) 

where 𝐿𝐿𝑇𝑇 𝑎𝑎𝑡𝑡𝑑𝑑 ℎ are the transverse width and water depth of 

the internal tank, respectively; 𝑘𝑘 𝑎𝑎𝑡𝑡𝑑𝑑 𝑇𝑇 are the wavenumber and 

wave period, respectively; and 𝑣𝑣 is the kinematic viscosity coef-

ficient of the inner fluid. 

The force caused by the sloshing flow was obtained using the 

following equation, with the generalized sloshing modes calcu-

lated after solving Equation (2):  

𝐹𝐹2𝑣𝑣𝑙𝑙𝑓𝑓𝑣𝑣ℎ(𝑡𝑡) = 𝜋𝜋𝑙𝑙 �−𝜂𝜂2′′(𝑡𝑡) + 𝑙𝑙2

𝑚𝑚2ℎ
∑ 𝛽𝛽𝑣𝑣′′(𝑡𝑡)𝑁𝑁
𝑣𝑣=1

1+(−1)𝑖𝑖+1

𝑣𝑣2
�        (10)  

The sloshing force calculated using Equation (10) acted as the 

external force in Equation (1). The displacement and accelera-

tion of the horizontal motion obtained by solving Equation (1) 

were substituted into Equation (10), and the ductile responses of 

the floating body and sloshing were calculated by iterating the 

two equations until the solutions converged. 

3. Numerical Simulations
The numerical examples are based on the experimental results 

discussed in a previous study [13]. A previous study contained a 

detailed methodology and overall experimental procedure. The 

experimental setup is illustrated in Figure 1. The basic parame-

ters of the two rectangular models and the water tank are listed in 

Table 1, and drawings of Models A and B are shown in Figure 2. 

Table 1: Particulars of experimental models [13] 

Model A 
(Weather side) 

Model B 
(Lee side) 

Floating barge 

Length [mm] 495.0 495.0 
Breadth [mm] 400.0 400.0 
Depth [mm] 400.0 300.0 
Draft [mm] 200.0 100.0 

Water tank 

Length [mm] 215.0 215.0 
Breadth [mm] 380.0 380.0 
Depth [mm] 380.0 280.0 
Draft [mm] 190.0 67.2 

Figure 1: Schematic of experimental models for two rectangular 

barges [13] 

Figure 2: Front and top view of two models [13] 

All other conditions were the same, with half the draft of 

Model A being that of Model B. The two models were rigidly 

constrained, and numerical analysis was performed for the case 

where the internal tank level was 50% for Model A and 40% for 

Model B. For the internal flow of Model A, we applied only the 

single-mode dominant method, whereas for Model B, we applied 

three numerical models: the single-, two-, and three-mode domi-

nant methods, which were extended in this study. 
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Table 2: Secondary resonance frequency induced by i-th slosh-

ing modes 

Model A Model B 
ω1,𝑣𝑣𝑙𝑙𝑓𝑓𝑣𝑣ℎ𝑣𝑣𝑡𝑡𝑖𝑖[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] 8.62 6.58 
ω2,𝑣𝑣𝑙𝑙𝑓𝑓𝑣𝑣ℎ𝑣𝑣𝑡𝑡𝑖𝑖[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] 6.35 5.81 
ω3,𝑣𝑣𝑙𝑙𝑓𝑓𝑣𝑣ℎ𝑣𝑣𝑡𝑡𝑖𝑖[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] 5.20 5.06 
ω4,𝑣𝑣𝑙𝑙𝑓𝑓𝑣𝑣ℎ𝑣𝑣𝑡𝑡𝑖𝑖[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] 4.50 4.47 
ω5,𝑣𝑣𝑙𝑙𝑓𝑓𝑣𝑣ℎ𝑣𝑣𝑡𝑡𝑖𝑖[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] 4.03 4.02 
ω6,𝑣𝑣𝑙𝑙𝑓𝑓𝑣𝑣ℎ𝑣𝑣𝑡𝑡𝑖𝑖[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] 3.67 3.67 

Figure 3: Sway transfer function (50% filled Model A and 40% 

filled Model B) 

Figure 3 shows the transfer function for the horizontal motion 

of the models. The frequencies at which the secondary resonance 

occurred owing to each sloshing mode are presented in Table 2. 

From the second sloshing mode onwards, the frequencies were 

obtained using Equation (11) [11]. 

𝜔𝜔
𝜔𝜔1

= �𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑡𝑡𝑚𝑚ℎ/𝑙𝑙)
𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑚𝑚ℎ/𝑙𝑙)

       (11) 

As shown in Figure 3, the effect of the internal flow of Model 

B based on the single- and two-mode dominant methods exhib-

ited significant differences from the experiment at the frequency 

(𝜔𝜔 = 5.5𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠) where the secondary resonance of Model B oc-

curred. However, when the three-mode-dominant method was 

applied, the numerical solution was similar to that of the experi-

ment at this frequency. 

Moreover, near the first sloshing resonance of Model B (6.5-7.2 

rad/s), the calculated values of all three analytical techniques dif-

fered from those of the experiment. To investigate this further, 

𝛽𝛽1−3 for Model A, those of Model B, and the displacements of the 

horizontal motion of the model are shown in Figures 4, 5, and 6, 

respectively. These are the numerical results obtained after apply-

ing the three-mode dominant method at 𝜔𝜔 = 6.58𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠. 

Figure 4: Generalized sloshing modes (𝜷𝜷𝟏𝟏−𝟑𝟑) of model A at 6.58 

rad/s 

Figure 5: Generalized sloshing modes (𝜷𝜷𝟏𝟏−𝟑𝟑) of model B at 6.58 

rad/s 

Figure 6: Time series of horizontal motion at 6.58 rad/s 

In Figure 4, the 𝛽𝛽1 excess increased over time, indicating that 

this influence was dominant. However, in a previous study, the 

validity of the single-mode dominant method was verified when 

the model was filled to 50% [13]. Therefore, the need to improve 

the internal flow of Model B, modeled by the three-mode domi-

nant method, was determined in this study. Because the sloshing 

modes of Models A and B were coupled, the sloshing modes of 

Model B may have affected the results of their counterparts in 

Model A. 

The Keulegan damping value was artificially increased to de-

termine whether the sloshing modes in Model B were overesti-

mated. For the internal flow of Model B, Figure 7 shows the re-

sults of increasing the modal damping value calculated using 

Equation (9) by a factor of five, and Figure 8 by a factor of 10. 



Two-dimensional horizontal motion of two floaters with internal flow using higher-order multi-modal method 

Journal of Advanced Marine Engineering and Technology, Vol. 47, No. 6, 2023. 12       347 

Figure 7: Sway transfer function for the two models (50% filled 

Model A and 40% filled Model B) with modal damping, 

ξ = 5 × ξ𝑡𝑡𝑒𝑒𝑘𝑘𝑙𝑙𝑒𝑒𝑖𝑖𝑡𝑡𝑡𝑡 

Figure 8: Sway transfer function for the two models(50% filled 

Model A and 40% filled Model B) with modal damping, 

𝛏𝛏 = 𝟏𝟏𝟏𝟏 × 𝛏𝛏𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌 

As the modal damping value increases, the resultant excessive 

horizontal motion near the first sloshing resonance frequency of 

Model B gradually decreases. The resulting 𝛽𝛽1−3, displacements 

of the total horizontal motion for Models A and B corresponding 

to Figure 8, are also shown in Figures 9, 10, and 11. 

Figure 9: Generalized sloshing modes(𝛽𝛽1−3) of the model A at 

6.58 rad/s; ξ = 10 × ξ𝑡𝑡𝑒𝑒𝑘𝑘𝑙𝑙𝑒𝑒𝑖𝑖𝑡𝑡𝑡𝑡 for model B 

Figure 10: Generalized sloshing modes(𝛽𝛽1−3) of the model B at 

6.58 rad/s; ξ = 10 × ξ𝑡𝑡𝑒𝑒𝑘𝑘𝑙𝑙𝑒𝑒𝑖𝑖𝑡𝑡𝑡𝑡 for model B 

Figure 11. Time series of horizontal motion at 6.58 rad/s; 

ξ = 10 × ξ𝑡𝑡𝑒𝑒𝑘𝑘𝑙𝑙𝑒𝑒𝑖𝑖𝑡𝑡𝑡𝑡 for model B 

In Comparison of Figure 10, Figure 5 reveals that the sloshing 

modes of Model B stabilized approximately 5 s earlier. Accord-

ingly, Model A reached a steady state at approximately 12 s. Fi-

nally, the overall horizontal motion converged stably and the re-

sults of this motion were not significantly different from the ex-

perimental values. 

Keulegan's modal damping coefficient model is essentially a 

boundary-layer formation model. Therefore, it is valid when the 

water level inside the model is sufficiently deep. However, at fi-

nite depths, its validity is limited by strong nonlinearity. There-

fore, further studies on the modal damping should be conducted. 

Figure 12: Sway transfer function (50% filled Model A and 50% 

filled Model B) 
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Finally, a numerical simulation was conducted for a slightly 

higher internal water level of 50% in Model B. The results are 

presented in Figure 12. The experimental values obtained using 

single- and two-mode-dominant methods were compared. 

The numerical results obtained using the three-mode dominant 

method closely matched those obtained using the two-mode 

dominant method. When the water level in the internal tank ex-

ceeded a certain level, the values of the higher-order sloshing 

modes (𝛽𝛽7−9) became approximately zero. Therefore, the three-

mode-dominant method, which has a significantly more complex 

form, becomes indistinguishable from the two-mode-dominant 

method. 

4. Conclusions
This study investigated the effects of internal flows at finite 

depths on floating-body behavior. A three-mode dominant 

method, which assumes up to three dominant sloshing modes in 

the internal flow, was derived and applied to the experiments in 

a previous study. The numerical results of single- and two-mode-

dominant methods were also presented for comparison. 

When Models A (50%) and B (40%) were filled, the problem 

of secondary resonance due to higher-order sloshing modes, 

which was a problem in the lower-order sloshing mode technique 

(single-dominant and two-mode dominant methods), was solved 

using the three-mode dominant method. However, in the first 

sloshing mode of Model B, the calculations did not accurately 

simulate the experiment. In this case, viscous damping can be 

adjusted to approximate the experimental value; however, this is 

not a fundamental solution. 

For Models A (50%) and B (50%), the two-mode dominant 

method was consistent with the experimental results. In the three-

mode dominant method, the values of the higher-order sloshing 

modes above 7th order converged to zero when the water level 

inside the small model exceeded a certain level. 

Although the three-mode dominant method solves the problem 

of finite depth, further research on viscous damping models is 

required. In addition, beyond the valid range, it is almost the 

same as that of the low-order multimodal method. Therefore, fur-

ther development is required for engineering applications. 
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Appendix 
By substituting the sloshing modes assumed in Equation (8) into 

the governing Equation (2), and eliminating the higher order terms 

than 𝜀𝜀1 for the internal flow, a total of nine equations for 𝛽𝛽1−9 can 

be achieved. 

(𝛽𝛽1′′ + 𝜎𝜎12𝛽𝛽1) + 𝛽𝛽1′′𝛽𝛽2𝐷𝐷11(1,2) + 𝛽𝛽1′′𝛽𝛽12𝐷𝐷21(1,1,1)

+ 𝛽𝛽1′′𝛽𝛽22𝐷𝐷21(1,2,2) + 𝛽𝛽1′′𝛽𝛽3𝛽𝛽1𝐷𝐷21(1,3,1)

+ 𝛽𝛽1′′𝛽𝛽32𝐷𝐷21(1,3,3) + 𝛽𝛽2′′𝛽𝛽1𝐷𝐷11(2,1)

+ 𝛽𝛽2′′𝛽𝛽3𝐷𝐷11(2,3) + 𝛽𝛽2′′𝛽𝛽2𝛽𝛽1𝐷𝐷21(2,2,1)

+ 𝛽𝛽2′′𝛽𝛽3𝛽𝛽2𝐷𝐷21(2,3,2) + 𝛽𝛽3′′𝛽𝛽2𝐷𝐷11(3,2)

+ 𝛽𝛽3′′𝛽𝛽12𝐷𝐷21(3,1,1) + 𝛽𝛽3′′𝛽𝛽22𝐷𝐷21(3,2,2)

+ 𝛽𝛽3′′𝛽𝛽3𝛽𝛽1𝐷𝐷21(3,3,1) + 𝛽𝛽2′ 𝛽𝛽1′ 𝑇𝑇01(2,1)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝑇𝑇01(3,2) + 𝛽𝛽1′𝛽𝛽1′𝛽𝛽1𝑇𝑇11(1,1,1)

+ 𝛽𝛽1′𝛽𝛽1′𝛽𝛽3𝑇𝑇11(1,1,3)

+ 𝛽𝛽2′ 𝛽𝛽1′𝛽𝛽2𝑇𝑇11(2,1,2)

+ 𝛽𝛽2′ 𝛽𝛽2′ 𝛽𝛽1𝑇𝑇11(2,2,1)

+ 𝛽𝛽2′ 𝛽𝛽2′ 𝛽𝛽3𝑇𝑇11(2,2,3)

+ 𝛽𝛽3′ 𝛽𝛽1′𝛽𝛽1𝑇𝑇11(3,1,1)

+ 𝛽𝛽3′ 𝛽𝛽1′𝛽𝛽3𝑇𝑇11(3,1,3)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽2𝑇𝑇11(3,2,2)

+ 𝛽𝛽3′ 𝛽𝛽3′ 𝛽𝛽1𝑇𝑇11(3,3,1) = 𝐾𝐾
~
1(𝑡𝑡) 

(A.1) 
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(𝛽𝛽2′′ + 𝜎𝜎22𝛽𝛽2) + 𝛽𝛽1′′𝛽𝛽1𝐷𝐷12(1,1) + 𝛽𝛽1′′𝛽𝛽3𝐷𝐷12(1,3)

+ 𝛽𝛽1′′𝛽𝛽2𝛽𝛽1𝐷𝐷22(1,2,1)

+ 𝛽𝛽1′′𝛽𝛽3𝛽𝛽2𝐷𝐷22(1,3,2)

+ 𝛽𝛽2′′𝛽𝛽12𝐷𝐷22(2,1,1) + 𝛽𝛽2′′𝛽𝛽22𝐷𝐷22(2,2,2)

+ 𝛽𝛽2′′𝛽𝛽3𝛽𝛽1𝐷𝐷22(2,3,1) + 𝛽𝛽2′′𝛽𝛽32𝐷𝐷22(2,3,3)

+ 𝛽𝛽3′′𝛽𝛽1𝐷𝐷12(3,1) + 𝛽𝛽3′′𝛽𝛽2𝛽𝛽1𝐷𝐷22(3,2,1)

+ 𝛽𝛽3′′𝛽𝛽3𝛽𝛽2𝐷𝐷22(3,3,2) + 𝛽𝛽1′ 𝛽𝛽1′ 𝑇𝑇02(1,1)

+ 𝛽𝛽3′ 𝛽𝛽1′ 𝑇𝑇02(3,1) + 𝛽𝛽1′𝛽𝛽1′ 𝛽𝛽2𝑇𝑇12(1,1,2)

+ 𝛽𝛽2′ 𝛽𝛽1′ 𝛽𝛽1𝑇𝑇12(2,1,1)

+ 𝛽𝛽2′ 𝛽𝛽1′ 𝛽𝛽3𝑇𝑇12(2,1,3)

+ 𝛽𝛽2′ 𝛽𝛽2′ 𝛽𝛽2𝑇𝑇12(2,2,2)

+ 𝛽𝛽3′ 𝛽𝛽1′ 𝛽𝛽2𝑇𝑇12(3,1,2)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽1𝑇𝑇12(3,2,1)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽3𝑇𝑇12(3,2,3)

+ 𝛽𝛽3′ 𝛽𝛽3′ 𝛽𝛽2𝑇𝑇12(3,3,2) = 𝐾𝐾
~
2(𝑡𝑡) 

(A.2) 

(𝛽𝛽3′′ + 𝜎𝜎32𝛽𝛽3) + 𝛽𝛽1′′𝛽𝛽2𝐷𝐷13(1,2) + 𝛽𝛽1′′𝛽𝛽12𝐷𝐷23(1,1,1) +

𝛽𝛽1′′𝛽𝛽22𝐷𝐷23(1,2,2) + 𝛽𝛽1′′𝛽𝛽3𝛽𝛽1𝐷𝐷23(1,3,1) + 𝛽𝛽2′′𝛽𝛽1𝐷𝐷13(2,1) +

𝛽𝛽2′′𝛽𝛽2𝛽𝛽1𝐷𝐷23(2,2,1) + 𝛽𝛽2′′𝛽𝛽3𝛽𝛽2𝐷𝐷23(2,3,2) +

𝛽𝛽3′′𝛽𝛽12𝐷𝐷23(3,1,1) + 𝛽𝛽3′′𝛽𝛽22𝐷𝐷23(3,2,2) + 𝛽𝛽3′′𝛽𝛽32𝐷𝐷23(3,3,3) +

𝛽𝛽2′ 𝛽𝛽1′ 𝑇𝑇03(2,1) + 𝛽𝛽1′𝛽𝛽1′𝛽𝛽1𝑇𝑇13(1,1,1) + 𝛽𝛽1′𝛽𝛽1′ 𝛽𝛽3𝑇𝑇13(1,1,3) +

𝛽𝛽2′ 𝛽𝛽1′𝛽𝛽2𝑇𝑇13(2,1,2) + 𝛽𝛽2′ 𝛽𝛽2′ 𝛽𝛽1𝑇𝑇13(2,2,1) +

𝛽𝛽2′ 𝛽𝛽2′ 𝛽𝛽3𝑇𝑇13(2,2,3) + 𝛽𝛽3′ 𝛽𝛽1′ 𝛽𝛽1𝑇𝑇13(3,1,1) +

𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽2𝑇𝑇13(3,2,2) + 𝛽𝛽3′ 𝛽𝛽3′ 𝛽𝛽3𝑇𝑇13(3,3,3) = 𝐾𝐾
~
3(𝑡𝑡) 

(A.3) 

(𝛽𝛽4′′ + 𝜎𝜎42𝛽𝛽4) + 𝛽𝛽1′′𝛽𝛽3𝐷𝐷14(1,3) + 𝛽𝛽1′′𝛽𝛽2𝛽𝛽1𝐷𝐷24(1,2,1)

+ 𝛽𝛽1′′𝛽𝛽3𝛽𝛽2𝐷𝐷24(1,3,2) + 𝛽𝛽2′′𝛽𝛽2𝐷𝐷14(2,2)

+ 𝛽𝛽2′′𝛽𝛽12𝐷𝐷24(2,1,1) + 𝛽𝛽2′′𝛽𝛽3𝛽𝛽1𝐷𝐷24(2,3,1)

+ 𝛽𝛽2′′𝛽𝛽32𝐷𝐷24(2,3,3) + 𝛽𝛽3′′𝛽𝛽1𝐷𝐷14(3,1)

+ 𝛽𝛽3′′𝛽𝛽2𝛽𝛽1𝐷𝐷24(3,2,1)

+ 𝛽𝛽3′′𝛽𝛽3𝛽𝛽2𝐷𝐷24(3,3,2) + 𝛽𝛽2′ 𝛽𝛽2′ 𝑇𝑇04(2,2)

+ 𝛽𝛽3′ 𝛽𝛽1′ 𝑇𝑇04(3,1) + 𝛽𝛽1′𝛽𝛽1′ 𝛽𝛽2𝑇𝑇14(1,1,2)

+ 𝛽𝛽2′ 𝛽𝛽1′ 𝛽𝛽1𝑇𝑇14(2,1,1)

+ 𝛽𝛽2′ 𝛽𝛽1′ 𝛽𝛽3𝑇𝑇14(2,1,3)

+ 𝛽𝛽3′ 𝛽𝛽1′ 𝛽𝛽2𝑇𝑇14(3,1,2)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽1𝑇𝑇14(3,2,1)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽3𝑇𝑇14(3,2,3)

+ 𝛽𝛽3′ 𝛽𝛽3′ 𝛽𝛽2𝑇𝑇14(3,3,2) = 𝐾𝐾
~
4(𝑡𝑡) 

(A.4) 

(𝛽𝛽5′′ + 𝜎𝜎52𝛽𝛽5) + 𝛽𝛽1′′𝛽𝛽22𝐷𝐷25(1,2,2) + 𝛽𝛽1′′𝛽𝛽3𝛽𝛽1𝐷𝐷25(1,3,1)

+ 𝛽𝛽1′′𝛽𝛽32𝐷𝐷25(1,3,3) + 𝛽𝛽2′′𝛽𝛽3𝐷𝐷15(2,3)

+ 𝛽𝛽2′′𝛽𝛽2𝛽𝛽1𝐷𝐷25(2,2,1) + 𝛽𝛽3′′𝛽𝛽2𝐷𝐷15(3,2)

+ 𝛽𝛽3′′𝛽𝛽12𝐷𝐷25(3,1,1) + 𝛽𝛽3′′𝛽𝛽3𝛽𝛽1𝐷𝐷25(3,3,1)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝑇𝑇05(3,2) + 𝛽𝛽1′𝛽𝛽1′𝛽𝛽3𝑇𝑇15(1,1,3)

+ 𝛽𝛽2′ 𝛽𝛽1′ 𝛽𝛽2𝑇𝑇15(2,1,2)

+ 𝛽𝛽2′ 𝛽𝛽2′ 𝛽𝛽1𝑇𝑇15(2,2,1)

+ 𝛽𝛽3′ 𝛽𝛽1′ 𝛽𝛽1𝑇𝑇15(3,1,1)

+ 𝛽𝛽3′ 𝛽𝛽1′ 𝛽𝛽3𝑇𝑇15(3,1,3)

+ 𝛽𝛽3′ 𝛽𝛽3′ 𝛽𝛽1𝑇𝑇15(3,3,1) = 𝐾𝐾
~
5(𝑡𝑡) 

(A.5) 

(𝛽𝛽6′′ + 𝜎𝜎62𝛽𝛽6) + 𝛽𝛽1′′𝛽𝛽3𝛽𝛽2𝐷𝐷26(1,3,2) + 𝛽𝛽2′′𝛽𝛽22𝐷𝐷26(2,2,2)

+ 𝛽𝛽2′′𝛽𝛽3𝛽𝛽1𝐷𝐷26(2,3,1) + 𝛽𝛽3′′𝛽𝛽3𝐷𝐷16(3,3)

+ 𝛽𝛽3′′𝛽𝛽2𝛽𝛽1𝐷𝐷26(3,2,1) + 𝛽𝛽3′ 𝛽𝛽3′ 𝑇𝑇06(3,3)

+ 𝛽𝛽2′ 𝛽𝛽1′𝛽𝛽3𝑇𝑇16(2,1,3) + 𝛽𝛽2′ 𝛽𝛽2′ 𝛽𝛽2𝑇𝑇16(2,2,2)

+ 𝛽𝛽3′ 𝛽𝛽1′𝛽𝛽2𝑇𝑇16(3,1,2) + 𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽1𝑇𝑇16(3,2,1)

= 𝐾𝐾
~
6(𝑡𝑡) 

 (A.6) 

(𝛽𝛽7′′ + 𝜎𝜎72𝛽𝛽7) + 𝛽𝛽1′′𝛽𝛽32𝐷𝐷27(1,3,3) + 𝛽𝛽2′′𝛽𝛽3𝛽𝛽2𝐷𝐷27(2,3,2)

+ 𝛽𝛽3′′𝛽𝛽22𝐷𝐷27(3,2,2) + 𝛽𝛽3′′𝛽𝛽3𝛽𝛽1𝐷𝐷27(3,3,1)

+ 𝛽𝛽2′ 𝛽𝛽2′ 𝛽𝛽3𝑇𝑇17(2,2,3)

+ 𝛽𝛽3′ 𝛽𝛽1′ 𝛽𝛽3𝑇𝑇17(3,1,3)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽2𝑇𝑇17(3,2,2)

+ 𝛽𝛽3′ 𝛽𝛽3′ 𝛽𝛽1𝑇𝑇17(3,3,1) = 𝐾𝐾
~
7(𝑡𝑡) 

 (A.7) 

(𝛽𝛽8′′ + 𝜎𝜎82𝛽𝛽8) + 𝛽𝛽2′′𝛽𝛽32𝐷𝐷28(2,3,3) + 𝛽𝛽3′′𝛽𝛽3𝛽𝛽2𝐷𝐷28(3,3,2)

+ 𝛽𝛽3′ 𝛽𝛽2′ 𝛽𝛽3𝑇𝑇18(3,2,3)

+ 𝛽𝛽3′ 𝛽𝛽3′ 𝛽𝛽2𝑇𝑇18(3,3,2) = 𝐾𝐾
~
8(𝑡𝑡) 

 (A.8) 

(𝛽𝛽9′′ + 𝜎𝜎92𝛽𝛽9) + 𝛽𝛽3′′𝛽𝛽32𝐷𝐷29(3,3,3) + 𝛽𝛽3′ 𝛽𝛽3′ 𝛽𝛽3𝑇𝑇19(3,3,3) =

𝐾𝐾
~
9(𝑡𝑡) 

 (A.9) 
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For (A.1) through (A.3), the first third generalized sloshing 

modes, 𝛽𝛽1−3 , can be obtained by iterating until the solution con-

verges. Further, higher-order generalized sloshing modes can be ob-

tained linearly. The coefficients (𝐷𝐷1,𝐷𝐷2,𝑇𝑇0,𝑇𝑇1) are determined by 

the water level and length inside the tank, and their relationship and 

derivation are described in detail in [11]. 
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