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Abstract: In this study, potentiodynamic polarization curves of carbon steel were employed to systematically characterize and predict 

its electrochemical corrosion behavior under varying environmental conditions. A three-factor full factorial design was utilized to vary 

critical parameters such as temperature, pH, and salinity, simulating diverse marine conditions. Using the TensorFlow 2.0 framework, 

a model based on an Artificial Neural Network (ANN) was constructed to predict the corrosion current density, a key indicator of 

corrosion rate. The ANN model demonstrated remarkable agreement with experimental data, achieving a correlation coefficient ex-

ceeding 0.98 for the training dataset. However, when extrapolating to conditions outside the training data, the model exhibited dimin-

ished accuracy. This emphasizes the potential of using ANN for corrosion prediction and underscores the importance of iterative model 

optimization in response to comprehensive datasets. 
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1. Introduction 
Ships play a crucial role in national economies, energy supply, 

and international trade. Advances in shipbuilding technology 

have consistently increased their size. Moreover, technological 

advancements and the reinforcement of environmental regula-

tions require a variety of equipment. Ships are continuously 

growing in both size and complexity, consequently escalating the 

potential risks associated with corrosion. This is due to ships be-

ing consistently operated in marine environments and exposed to 

seawater. 

Ships operate in marine environments and utilize seawater for 

various purposes. A prime example is the seawater cooling sys-

tem, comprising several pieces of interconnected equipment 

through seawater piping. This piping is crucial not only in ships 

but also in industrial facilities and offshore platforms. Mostly 

made of carbon steel, seawater piping is highly susceptible to 

corrosion due to the corrosive nature of seawater. Frequent cor-

rosion-induced damages can occur in these low-corrosion-re-

sistant pipes, potentially rendering a ship inoperable. 

Over the past few decades, there has been a consistent increase 

in interest in advancing methods and management techniques for 

marine systems. Surface coatings and highly corrosion-resistant 

materials, such as stainless steel, have proven effective in extend-

ing the lifespan of vessels and ensuring their safe operation. 

However, it's worth noting that ships are primarily constructed 

using low-corrosion-resistant carbon steel. This decision is pri-

marily based on economic considerations, as the cost of materials 

constitutes a substantial part of total shipbuilding expenses. Fur-

thermore, carbon steel offers advantages in terms of machinabil-

ity, mechanical properties, and weight considerations. Currently, 

ship components such as the hull, ballast tanks, and engine room 

piping are still fabricated from carbon steel, continuously expos-

ing them to seawater. Corrosion remains a paramount concern in 

maritime operations, directly impacting the operational integrity 

and safety of vessels. 

Traditionally, ships have employed corrosion protection 

measures, including high-corrosion-resistant alloys, cathodic 

protection, and protective coatings. However, these methods are 

typically effective only in specific equipment or sections. Conse-

quently, there is a pressing need for comprehensive monitoring 

and proactive prediction of the overall corrosion status of ships. 

Modern vessels require a shift in metal corrosion monitoring ap-

proaches. Additionally, ongoing development includes real-time 

corrosion monitoring systems that integrate both IoT and sensor 
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technologies. 

Recently, machine learning algorithms have emerged as potent 

tools in the domain of corrosion prediction. Techniques like Sup-

port Vector Machines (SVM) [2], Artificial Neural Networks 

(ANN) [3], and Radial Basis Functions (RBF) [4] have been ap-

plied to predict electrochemical corrosion. Notably, ANN, funda-

mental components of deep learning, are extensively employed 

across various fields to address intricate problems. They are par-

ticularly adept at tackling nonlinear challenges [5]. 

Various methodologies are used to monitor metal corrosion, 

with linear polarization and Tafel extrapolation being the most 

prominent techniques. These methods are based on the electro-

chemical reaction between the metal and the exposure environ-

ment and are very useful for assessing the corrosion properties 

and rates of metallic materials in corrosive environments. How-

ever, electrochemical methods require specialized equipment and 

have limitations in field applications. Additionally, these electro-

chemical methods necessitate inferring corrosion characteristics 

from irregular curve patterns composed of potential versus cur-

rent density. These patterns can significantly vary based on the 

complexity of the corrosion environment. In constrained settings 

like ships, data-driven predictive models can be useful for prob-

lem-solving. 

In the present research, we utilize the ANN model to accu-

rately predict the potentiodynamic polarization curves and the as-

sociated corrosion rate of carbon steel. Our approach was sys-

tematically executed in three distinct stages: data acquisition, 

model training, and validation. Initially, comprehensive poten-

tiodynamic polarization experiments were conducted, consider-

ing various parameters, yielding potential versus current density 

curves. Subsequently, this data was used to train the ANN, ensur-

ing optimization by fine-tuning its parameters. To ascertain the 

robustness of our ANN model, its performance was then vali-

dated against experimental data not previously included in the 

training set. The result of this study emphasizes the potential of 

ANN-based models in enhancing the understanding and predic-

tion of corrosion behavior. 

2. Experimental Methods

2.1. Sample Preparation for Corrosion Test 
The AH-32 grade carbon steel used in this study had the fol-

lowing chemical composition (wt.%): C 0.18, Si 0.5, Mn 0.9-1.6, 

S 0.035, Cr 0.2, Mo 0.08, Ni 0.4, Cu 0.35, Nb 0.02, V 0.05, and 

Fe balance. Specimens for corrosion tests were machined to 

dimensions of 20 mm x 20 mm. The surface of each specimen 

was polished sequentially using emery paper, finishing with #600 

grit paper. After polishing, they were thoroughly cleaned with ac-

etone and subsequently dried in a drying oven. 

2.2. Potentiodynamic Polarization Test 
In the electrochemical evaluation, a potentiodynamic polari-

zation technique was employed using a three-electrode setup in 

an electrochemical workstation (Bio-logic, VSP). The working 

electrode (WE) configuration involved a specimen with an elec-

troactive surface area of 1 cm2. A specific electrolyte volume-to-

specimen area ratio was maintained at 5 mL/mm2. The counter 

electrode (CE) was realized using a platinum mesh of dimensions 

20 mm x 20 mm, while an Ag/AgCl electrode, saturated with 

KCl, served as the reference electrode (RE). Electrochemical 

equilibrium was ensured by stabilizing the system until the po-

tential drift was limited to below 2 mV/h or for a maximum du-

ration of one hour. The potentiodynamic sweep was then exe-

cuted from -250 mV to +250 mV with respect to the open circuit 

potential (OCP) at a scan rate of 5 mV/s. 

2.3 Experimental Design 
The corrosion experiment was designed using a three-factor 

full factorial design, as shown in Table 1. Each factor was set at 

three distinct levels, resulting in a total of 27 experiments. Table 

2 presents the full factorial design details. The experimental fac-

tors were chosen based on previous relevant studies [6]-[8] and 

practical considerations in ship operations [9]-[11]. 

Table 1: Designed factors and their levels 

Factors Unit 
Level  

(Normalized value) 

1 2 3 

Temp. (A) ℃ 10 25 40 
pH (B) 3 5 7 

NaCl(C) % 3.5 5.25 7 

Table 2: Experiment condition in a full factorial design 

Exp. 
No. 

Factor 

Temp., ℃ pH NaCl, % 

1 10 3 3.5 
2 10 3 5.25 
3 10 3 7 
4 10 5 3.5 
5 10 5 5.25 
6 10 5 7 
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7 10 7 3.5 
8 10 7 5.25 
9 10 7 7 
10 25 3 3.5 
11 25 3 5.25 
12 25 3 7 
13 25 5 3.5 
14 25 5 5.25 
15 25 5 7 
16 25 7 3.5 
17 25 7 5.25 
18 25 7 7 
19 40 3 3.5 
20 40 3 5.25 
21 40 3 7 
22 40 5 3.5 
23 40 5 5.25 
24 40 5 7 
25 40 7 3.5 
26 40 7 5.25 
27 40 7 7 

2.4. Corrosion Rate Calculation 
The corrosion current density was determined using the Tafel 

extrapolation method applied to potentiodynamic curves [12]. By 

extrapolating the anodic and cathodic slopes from the linear po-

larization region, the intersection point was identified to deter-

mine the corrosion current density, as illustrated in Figure 1. This 

analysis was facilitated by the EC-Lab® Software integrated into 

the electrochemical equipment. The corrosion rate, expressed in 

mils penetration per year (mpy), was then computed using Equa-

tion (1) following Faraday's law. 

Figure 1: Tafel extrapolation for determining electrochemical 

corrosion parameters 

mpy = Icorr. × λ × ρ/1 × ϵ,         (1) 

where λ is 1.2688×105, Icorr. is corrosion current density, ρ is 

the density (7.86g/cm3), and ϵ is the equivalent weight (27.56). 

2.5. Data Set 
This study utilized potentiodynamic data from polarization 

curves. Each curve consists of 100 data points representing po-

tential versus current density. A single polarization curve is char-

acterized by four inputs: temperature, pH, salinity concentration, 

and polarization potential, with the output being the current den-

sity. Consequently, the dataset used in this study includes a total 

of 2700 columns of input and output variables. Each input varia-

ble has been normalized to have a value between 0 and 1, as per 

Equation (2). 

X = (x - xmin.) / (xmax - xmin),                      (2) 

where X is the normalized value, x is the unnormalized value, 

and xmax and xmin denote the maximum and minimum values for 

each level, respectively.  

2.6. Artificial Neural Network, ANN 
The ANN model employs supervised learning through the 

back-propagation algorithm. In this study, it is designed to accept 

four inputs: temperature, pH, salinity concentration, and polari-

zation potential. It then produces an output corresponding to the 

corrosion current density. As illustrated in Figure 2, the ANN ar-

chitecture is a multilayer perceptron, consisting of an input layer 

with four nodes, several hidden layers, and a single-node output 

layer. The activation function used in each hidden layer is the 

hyperbolic tangent (tanh) as given by Equation (3). 

Figure 2: Schematic diagram for ANN architecture 

𝛷𝛷(𝑣𝑣) = (𝑒𝑒^2𝑣𝑣 − 1)/(𝑒𝑒^2𝑣𝑣 + 1),           (3)   

For the ANN, the data was split into training, validation, and 

test sets in proportions of 80%, 10%, and 10%, respectively. This 

division was randomly executed during the training phase. The 



Kwang-Hu Jungㆍ Jung-Hyung Lee 

Journal of Advanced Marine Engineering and Technology, Vol. 47, No. 6, 2023. 12       320 

ANN was implemented in Python 3.7, using the TensorFlow 2.0 

library. 

3. Results and Discussion

3.1 Potentiodynamic Curves 
To generate training data for the ANN model, potentiodynamic 

tests were performed with factor combinations, as listed in Table 

2. The results for the 27 conditions are depicted in Figure 3. All 

curves illustrate a rapid increase in the current density in the an-

odic range, which is attributed to the oxidation reaction on the 

WE. Some curves displayed stagnation in the corrosion current 

density in the cathodic section owing to oxygen concentration 

limitations. This phenomenon is known as "oxygen concentra-

tion polarization,” indicating that the current density plateaus ap-

proximately at 10-1 mA/cm2, which results from oxygen diffusion 

constraints within the cathodic range [13]. Consequently, the po-

larization curves revealed complex patterns influenced by factor 

variables and electrochemical reactions.  

(a) 

(b) 

(c) 

(d) 

Figure 3: Potentiodynamic curves with corrosion parameter 

combination 

Table 3 lists the Icorr., Ecorr., and mpy values obtained using the 

Tafel extrapolation method. The samples exhibited an mpy range 

from a minimum of 9.7 to a maximum of 192.8. Factors had var-

ying influences based on the mean and variance of the response. 

The order is as follows: factor B (pH), factor A (temperature), 

and factor C (salt conc.). 

This suggests that each factor and its level affect both the po-

larization curve and the corrosion characteristics. Consequently, 

they can serve as inputs for the ANN to produce significant out-

puts. 

Table 3: Icorr, Ecorr, and mpy derived through the Tafel extrapo-

lation method 

Test Ecorr., mV Icorr., μA mpy 

1 -628.4 159.8 72.1 
2 -620.1 136.9 62.8 
3 -631.9 151.1 68.2 
4 -531.0 54.4 24.5 
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5 -559.1 62.8 28.3 
6 -556.9 21.6 9.7 
7 -558.4 54.8 24.7 
8 -548.3 52.3 23.6 
9 -549.7 47.0 21.2 
10 -678.7 160.9 72.7 
11 -678.4 193.6 87.4 
12 -688.9 180.8 81.6 
13 -573.3 76.1 34.4 
14 -586.1 48.0 21.7 
15 -599.9 31.2 14.1 
16 -587.0 69.5 31.4 
17 -569.5 51.6 23.3 
18 -582.6 49.6 22.4 
19 -656.7 426.9 192.8 
20 -669.2 386.6 174.6 
21 -665.1 381.5 172.3 
22 -533.2 159.6 72.0 
23 -573.4 122.8 55.4 
24 -569.3 126.4 57.1 
25 -554.7 122.4 55.2 
26 -552.9 142.1 64.2 
27 -558.8 106.5 48.1 

3.2 Optimal Parameters of ANN 
Determining the optimal parameters for the ANN model is sig-

nificant to ensure superior performance during the training, vali-

dation, and test phases. These parameters can depend on various 

factors including the network structure, activation function, 

learning rate, and data acquisition. Finding the optimal combina-

tion typically involves multiple iterations and adjustments. In our 

study, we employed an ANN with a 4-50-50-1 architecture. The 

mean squared error (MSE), as presented in Equation (4), was the 

chosen loss function for training the model. 

,
𝑛𝑛
� �𝑋𝑋(𝑡𝑡) − 𝑋𝑋′(𝑡𝑡)�2

𝑛𝑛

1
,              (4) 

where, 𝑛𝑛 is the number of outputs for the training set, 𝑋𝑋(𝑡𝑡) is 

the actual value, and 𝑋𝑋′(𝑡𝑡) is the predicted value. The MSE is 

used as a loss function for the regression results in the ANN 

model and represents the difference between the actual and pre-

dicted values. Consequently, one of the primary objectives of 

model training is to minimize MSE through iterative learning.  

Figure 4 depicts the MSE in relation to the number of epochs 

for the ANN model. The MSE decreased sharply up to 100 

epochs, after which the reduction proceeded more gradually. At 

a maximum of 500 epochs, the MSE values were found to be 

0.0018 and 0.0016, with no further significant decline beyond 

more epochs. This trend suggests that the ANN model reached an 

optimal level of training at approximately 100 epochs, where ad-

ditional training did not markedly enhance the performance. 

Figure 4: MSE in relation to the number of epochs for the ANN 

model 

3.3 Validation for ANN model 
Figure 5 illustrates both the actual and predicted curves. For a 

total of 27 polarization curves, the ANN presented curves that 

closely resembled the actual shape, as Figure 5(a)-(c).  
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(b) 
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(c) 

(d) 
Figure 5: Experimental and ANN predicted potentiodynamic 
curves for some condition 

However, as observed in experiments no. 6 and 19, there were 

slight deviations at some data points. The ANN showed a very 

high learning performance on the entire training dataset; how-

ever, the cathode region exhibited a slightly lower learning per-

formance than the anode region. Given that ANN models are 

trained to minimize the loss function, they may emphasize learn-

ing in certain regions over others, depending on the range or dis-

tribution of the output value [14]. In this study, the output of the 

ANN model was the current density. The current density in the 

anodic region in the data was up to two orders of magnitude 

higher than that in the cathodic region. Therefore, it is possible 

that the ANN model was trained to preferentially reduce the MSE 

for the data in the anode region. 

Figure 6 illustrates the correlation between the actual values 

and ANN’s predictions, providing empirical evidence of the 

model's performance across the training, validation, and test data. 

Most data points were concentrated near the best-fit regression 

line (Y=T), demonstrating a high correlation, with a coefficient 

of determination close to 1. The correlation coefficients R2 for 

the training, validation, and test phases were 0.999, 0.9847, and 

0.984, respectively, indicating a robust model fitness. Although 

there are minor deviations between the actual and predicted data 

at specific points, the overall predictions were consistent and 

reliable. This indicates the potential of the ANN model to learn 

the pattern of the polarization curve in complex combinations of 

factors.  

(a) (b) 

(c) (d) 

Figure 6:  Actual value vs. ANN predicted values for log(i) 

However, a high degree of correlation coefficient might indi-

cate a potential risk of overfitting. Overfitting means that the 

model might be too closely tailored to the training data, leading 

to decreased performance with new data. Therefore, external val-

idation using datasets that are not included in the training phase 

is essential. 

3.4 Prediction Performance 

Figure 7 shows a comparison of the actual polarization and 

prediction curves from the ANN model for the new test condi-

tions excluded from the ANN training data. For Test Condition 3 

in Figure 7(c), the ANN generated a polarization curve that was 

very similar to the actual curve. In addition, Ecorr. and Icorr. also 

showed very similar values, and the actual and predicted mpy val-

ues were found to be 42.109 and 35.369, respectively. In contrast, 

test conditions 1 and 2, illustrated in Figure 7(a, b), exhibited 

similar Ecorr. values However, a noticeable deviation in the cur-

rent density between the anode and cathode is evident. This de-

viation is further emphasized by the significant mpy variation dis-

played in Figure 7(d). Such outcomes underline the capacity of 

the ANN model to yield precise predictions for certain Test Con-

ditions, while also revealing its limitations under other condi-

tions, such as Test Conditions 1 and 2.  
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(a) 

(b) 

(c) 

(d) 
Figure 7: Actual and ANN curves (These conditions not in-

cluded in Table 2) 

The observed discrepancies can be attributed to inherent dif-

ferences or potential noise in the test conditions, suggesting the 

need for more extensive data collection and model optimization. 

In summary, the ANN model in its present configuration demon-

strates considerable capability in corrosion prediction, 

particularly in reproducing polarization curves, while emphasiz-

ing the need for ongoing optimization to enhance its wider appli-

cation.  

4. Conclusion
In this study, we employed an ANN model to analyze the cor-

rosion patterns of carbon steel based on potentiodynamic tests 

conducted within a structured experimental matrix defined by a 

three-level full factorial design. This systematic approach pro-

duced 27 distinct polarization curves, each containing 100 data 

points covering variables such as the temperature, pH, salinity, 

and polarization potential. Overall, this provided a robust dataset 

of 2700 data points for training and optimizing our ANN model. 

The results demonstrated that the ANN model exhibited robust 

learning performance in predicting the polarization curve pat-

terns of carbon steel, especially when exposed to environments 

influenced by a combination of various conditions. In this study, 

the ANN model displayed notable accuracy, with a correlation 

coefficient exceeding 0.98 between the training dataset and the 

predicted outcomes. However, when analyzing data points out-

side the scope of the training set, the model showed significant 

discrepancies. It is thus clear that ANNs possess the capability to 

address the complexities of predicting corrosion behaviors, espe-

cially in settings marked by diverse environmental conditions. To 

further enhance the precision of the ANN model, ongoing efforts 

focusing on expanding training datasets, improving data prepro-

cessing techniques, and optimizing the model's architecture re-

main essential. 
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