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Abstract: Colorizing black and white photos and movies enhances the old versions, and make them more interesting to see. Therefore, 

we became interested in image colorization, which plays an essential role in the field of computer vision. Recently, deep learning 

techniques for image colorization have progressed remarkably. In this study, colorization is carried out using a novel deep learning 

model for vivid coloring. The model consists of two components: Pix2Pix as a generative adversarial network (GAN), and the multi-

layer perceptron (MLP) of a denoiser. The Pix2Pix primarily generates the color image for a given grayscale image as input, and the 

MLP transforms the colored image into a vivid color image by filtering out noise. In our experiments, the grayscale images used as 

input images were images of natural objects and artifacts. We observed that the predicted images provided as output images were more 

neatly colored through the proposed method. 
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1. Introduction
The color of an object is determined by the wavelength of the 

reflected light, as affected by the physical properties of the ob-

ject. To classify and express colors on a computer, we use RGB-

like color models that mathematically describe colors. Coloriza-

tion is the process of adding plausible color information to gray-

scale images [1][2]. Colorization has become common, and re-

storing grayscale images to color images can provide a more 

lively and special effect with the advent of digital image pro-

cessing. 

There are many benefits in colorizing images: 1) colorizing 

grayscale images and videos enhance the old versions, making 

them more interesting to see; and 2) colorizing night vision pic-

tures makes them appear more vividly for autonomous driving 

and military applications. Image colorization can also be used to 

help a user to analyze an image. However, it is costly and time-

consuming if image colorization must be performed manually by 

many artists. Recently, deep learning techniques [3][4] have pro-

gressed remarkably for image colorization. 

The goal of a colorization model is to convert a grayscale im-

age into a more natural color image by guessing colors through 

learning. In this paper, we propose a novel deep learning model 

for colorization. Basically, the model converts grayscale images 

into their color images using Pix2Pix model [5], which is a gen-

erative adversarial network (GAN) and an approach to training a 

deep convolutional neural network (CNN) for image-to-image 

translation tasks. Then, we use a denoiser with a multi-layer per-

ceptron (MLP) to gradually improve the performance. An im-

proved result can be extracted by minimizing the gap between 

the generated images and original images when viewing them. 

Moreover, our approach can successfully color high-level image 

components. In our experiments, the input grayscale images were 

images of natural objects and artifacts, and output images of pre-

dicted images were neatly colored through the proposed method. 

Also, an image quality measurement between the original color 

image and an image extracted by our method showed excellent 

results. 

The rest of this paper is organized as follows. Section 2 pre-

sents the related works for colorization in brief. Section 3 de-

scribes the proposed method for colorization using Pix2pix and 

the MLP to improve the performance of colorization. In Section 

4, we discuss the empirical results. Finally, Section 5 summarizes 

the work described herein and draws some conclusions and di-

rections for future research. 
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2. Related Works for Colorization
In this section, we will briefly describe the vanilla GAN [6][7] 

of a well-known image generation model, a deep convolution 

GAN (DCGAN) of a GAN using a CNN, and a conditional GAN 

(CGAN) for feeding the data conditioned on certain factors, in 

order.  

2.1 Vanilla generative adversarial network (GAN) 
GAN [6][7] is one of the well-known generation models, and 

is a model that can generate data or samples with a pseudo-dis-

tribution Pmodel(𝑥𝑥)  generated by learning using learning data 

with a specific probability distribution Pdata(𝑥𝑥). The GAN is an 

unsupervised learning model in which a Generator (G) and Dis-

criminator (D) interact. G plays a role in generating data and de-

ceiving D, and D plays a role in uncovering the falsehood of the 

image generated from G, as shown in Figure 1. 

Figure 1: Generative adversarial network (GAN) architecture 

First, looking at D, it is distinguished whether the input given 

to the role of D is real data. Given the Data x as input, the output 

D(x) of D returns the probability that x is real data. The role of 

G is to create fake data that is so real that it is impossible to tell 

whether D is real. When the Latent space is given as shown in 

the figure above, a fake image G(z) is generated through G. If 

such G(z) is given again as input of D, D(G(z)) returns the prob-

ability that G(z) is real data. 

𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑑𝑑𝑑𝑑𝑡𝑡𝑎𝑎[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑥𝑥)] + 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧[𝑙𝑙𝑙𝑙𝑙𝑙(1− 𝐷𝐷(𝐺𝐺(𝑧𝑧)))]      (1) 

From Equation (1) above, Discriminator D estimates that 

when actual data enters the output, the result is close to 1 and 

when fake data created by G enters, the result is close to 0. The 

GAN learns in this way from G and D alternately. G makes it 

possible for D to create fake data that is indistinguishable, and D 

makes it possible to find a balance point by learning G to distin-

guish between any fake data well. 

2.2 Deep convolution GAN (DCGAN) 
To solve the well-known poor stability of the GAN, the 

DCGAN [8], which applies a CNN, announced a model with an 

optimal structure. It was confirmed through experiments that ap-

plying the CNN to the original GAN alone cannot achieve suffi-

ciently good results. Here are five methods applied in the vanilla 

GAN to produce optimal results: 1) remove the pooling layer and 

adjust the size of the feature-map using stridden convolution; 2) 

apply batch normalization; 3) remove the fully connected hidden 

layer; 4) Use the tanh function as the active function of the output 

terminal of the generator; and 5) use the rectified linear unit as 

the active function of the Discriminator.  

2.3 Conditional GAN (CGAN) 
The CGAN [9]-[11] is a method of adding any condition y that 

can control the generation conditions to the original GAN, as 

shown in Figure 2. It can add information indicating a specific 

condition to the Generator and Discriminator. In fact, the effect 

of the condition occurs, and the type of output value is deter-

mined based on the value set during back-propagation when 

learning is performed. Later, the result can be manipulated by 

adding a condition value to the Generator. In the case of the Gen-

erator, the condition is accepted as an indicator of what to output, 

whereas the Discriminator accepts the condition and predicts 

what will come. It is used to adjust the pair between condition 

and real data, condition and fake data. 

Figure 2: Conditional GAN (CGAN) architecture 

𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑥𝑥|𝑦𝑦)] + 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧[𝑙𝑙𝑙𝑙𝑙𝑙(1− 𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)))]  (2) 

The value function as shown in Equation (2) of the CGAN is 

the same as Equation (1) of the vanilla GAN, except that only 

the input variables x and z enter as conditional variables x|y and 

z|y. In Equation (2), y can have various forms, as the form of y 

is not specifically defined. For example, if one wants to generate 

a desired number in MNIST, which recognizes cursive numbers, 
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an additional label corresponding to the class of numbers can be 

added. In this study, the condition is the grayscale image. 

3. Colorization through Denoiser with MLP
Figure 3 shows the overall architecture of the proposed model, 

which converts grayscale images into visually acceptable color 

images. The model consists of two components: the Pix2Pix 

model of the GAN and the MLP model of the denoiser. The 

Pix2Pix model [5] is a GAN and an approach to training a deep 

convolutional neural network for image-to-image translation 

tasks. The MLP transforms the colored image into a vivid color 

image by filtering out noise and then improving the performance. 

The models are described in detail in sequential subsections. 

Figure 3: Overall architecture of the proposed model 

3.1 Generator 
The Generator uses the structure of U-Net [12], as shown in 

Figure 4. The U-Net comprises an encoder-decoder with skip 

connections between mirrored layers in both the stacks. In this 

study, the input of U-Net is grayscale images and the output is 

colored images. The U-Net enables colorization even with a 

small number of data. Unlike an autoencoder of an encoder-

decoder, this increases speed and solves the trade-off between 

context recognition and localization. 

Figure 4: U-Net structure as Generator of Pix2pix 

Context means the relationship between neighboring image 

pixels, and it can be seen as understanding the context of the 

overall image by looking at a part of the image. In addition, the 

trade-off is that it is easy to understand the context if a wide range 

of images is recognized at once, but then localization is not per-

formed properly, so which pixel is which label is not recognized 

in detail. Conversely, if the range is narrowed, detailed localiza-

tion is possible, but the context recognition rate is lowered. So, 

U-Net uses the following: 1) a patch search method rather than a 

sliding window; and 2) the context of the image is captured in the 

contracting path. In addition, after upsampling the feature-map 

in the expanding path, it is combined with the context of the fea-

ture-map captured in the contracting path to increase the accu-

racy of localization. Through these two processes, the speed is 

improved and trade-offs are resolved. From the left contracting 

path in Figure 4 above, convolution and pooling are performed 

to increase the number of channels in the feature-map by two 

times at each step, but while downsampling the size by two times. 

That is, it is small and sturdy. Next, the right expanding path goes 

through the contracting path, and the feature-map is downsam-

pling so the resolution is much lower. Upsampling is performed 

several times to increase the resolution, i.e., to change the coarse-

map into a dense-map. 

U-Net uses the skip-connection concept, which combines the 

feature-map of the shallow layer with the feature-map of the deep 

layer. Here, the feature-map of the previous step before pooling 
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is copied in the contracting path and concatenated to the corre-

sponding feature-map in the expanding path. Note that missing 

data many occur if the size of the feature-map of the expanding 

path is smaller than the feature-map of the contracting path. So, 

for image correction, the middle part is cropped to an appropriate 

size, re-adjusted to a slightly smaller image, and attached. In the 

expanding path, after the upsampling step, the copy and crop and 

concatenate process is repeated at every step. Accordingly, con-

volution is performed in a state where the two feature-maps are 

superimposed. The features are fused to each other, resulting in 

better labeling of the values in the same pixel in this process.  

3.2 Discriminator 
The Discriminator use the structure of PatchGAN as shown in 

Figure 5. Whereas the original Discriminator makes a fake/real 

judgment for the entire image, PatchGAN divides the image cre-

ated by the Generator into small patches and determines the au-

thenticity of the patches as fake/real. That is, a patch size of an 

appropriate size corresponding to the range in which the correla-

tion relationship is maintained is determined, and the patches are 

mostly learned in the real direction. Here, the patch size can be 

viewed as a hyperparameter because it must include the overall 

image size and an appropriate range in which a correlation be-

tween a specific pixel and other pixels exists in the entire image. 

Also, PatchGAN makes it possible to model an image as one 

Markov random field (MRF), because it assumes that pixels far-

ther away than the patch diameter are independent of each other. 

MRF is an undirected graph model and is used to analyze images 

through Bayesian modeling. It has local, not temporal, Markov 

properties between random fields, so only the neighboring pixels 

are considered and the rest are not taken into account.  

Figure 5: PatchGAN structure as Discriminator of Pix2pix 

In other words, PatchGAN does not judge by looking at the 

entire data to identify one part of the data, but by identifying and 

judging the relationship with neighboring data. 

By using this structure, more detailed high-level features can 

be well-captured in the image, and blur can be covered to some 

extent. Also, the number of parameters is much smaller because 

the operation is performed while the sliding window passes. This 

results in a faster computation speed and flexibility in terms of 

structure, as it is not affected by the overall image size. 

3.3 Improver 
The Improver uses the structure of the MLP, as shown in Fig-

ure 6. The input and the output of the Improver are the color im-

ages generated by Generator and original color images, respec-

tively. The Improver plays the central role of a de-noiser in the 

performance improvement. The MLP is trained by the back-prop-

agation algorithm, which is a method of updating weights from 

back to forward to reduce errors present in the final output. In 

this study, the weights are updated by comparing the output with 

the original image as a correct value to increase the performance 

of the predicted image as the final image, as shown in Figure 6.  

Figure 6: Data flow of Improver 

The Improver's structure includes input, concealment, and out-

put layers. The relationship between them exists in all combina-

tions with weight values because they are fully connected. As 

shown in Figure 6 above, the generated color image passes 

through the Improver to extract the predicted color image. Com-

pared to the original color images, L1 loss and LcGAN loss values 

occur between them. These quantitatively indicate how much the 

loss value of a specific weight affects through partial differentia-

tion. Then, these are back-propagated again through the Im-

prover. 

First, the L1 loss is the sum of the absolute error values be-

tween the original color image and predicted color image. This 

makes a blurred image, because it is difficult to accurately extract 

the location of the edge. If the system learns only the L1 loss, it 

can only adjust the low-frequency content of the image, and a 

grayish color comes out. By applying this point, it is determined 
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that the grayish color is not realistic, so an image closer to the 

true color distribution is extracted by additionally learning the 

LcGAN loss. By adding the LcGAN loss value to the original L1 loss, 

the low-frequency content and the high-frequency content are 

learned. Accordingly, sharp and real images can be obtained, un-

like images obtained using only the L1 or L2 loss. 

In the process of the Improver, the problem of a vanishing gra-

dient can also be solved, and feedback is possible in more detail 

because the Improver proceeds in units of patches. This requires 

fewer parameters and can quickly derive results. In addition, the 

accuracy can compared and the gap can minimized to show a 

more accurate resultant image through the gap between the orig-

inal color image and the image extracted by the proposed 

method. 

3.4 Loss 
There are an adversarial loss and a reconstruction loss in this 

study. The adversarial loss of LCGAN loss indicates whether the 

input image is a real image, as defined in Equation (2). The re-

construction loss of L1loss indicates the gap between the gener-

ated image and original color image, and represents the mean ab-

solute error(MAE) defined as follows: 

𝐿𝐿𝐿𝐿1(𝐺𝐺) = 𝐸𝐸𝑥𝑥,𝑦𝑦||y-G(x)||1  (3) 

The reconstruction loss is used to allow the Generator to gen-

erate between images that are more similar to reality, leaving the 

Discriminator to determine fake images. The total generator loss 

is defined in Equation (4) as follows:  

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺,𝐷𝐷) +  𝜆𝜆𝐿𝐿𝐿𝐿1(𝐺𝐺)      (4) 

When only LcGAN is used on U-Net, it is difficult to say that 

the result is the same as the original color image; rather, it only 

plays a role of looking like a real image. It is good at catching the 

low-frequency content of the image, but not the high-frequency 

content. In other words, it cannot get the details, as it only gets 

the overall outline. Thus, the high-frequency content is caught in 

PatchGAN. When the blurred image is added to the L1 loss be-

tween the generated image and original color image, a sharper 

and more authentic image is extracted. It splits the image into 

patch units without having to perform a sliding operation on the 

entire image and determines each part independently to extract 

the final image. The objective function of the Generator includes 

only the value of LCGAN . As it is a direction to minimize the 

Manhattan distance between the original image and generated 

image, there is a tendency to focus on the average component of 

the image, that is, the low frequency. However, if the structure of 

the PatchGAN is applied by summing the LCGANand L1loss val-

ues as mentioned above, real/fake is determined by patch unit of 

a specific size rather than the entire area, and the result is taken 

as an average.  

3.5 Learning process 
In this study, learning proceeds in the order of Discriminator, 

Generator, and Improver. First, the Discriminator trains to clas-

sify and determinate the original color image as true (1) and the 

predicted color image as fake (0). The generated color image is 

extracted when the grayscale image enters the input of the Gen-

erator. At this time, the Generator continues to evolve in the di-

rection of deceiving the Discriminator through repetitive learn-

ing, and eventually generates a plausible image that is difficult to 

distinguish. The generated color image immediately generates a 

predicted color image through the Improver. However, there is 

always a gap between the predicted color image and the original 

color image. This loss is generated by summing the L1 loss and 

LcGAN loss, and a more realistic color image is extracted while 

updating the predicted color image on a patch-unit basis.  

The Discriminator classifies and judges the image as fake/ real, 

and Generator continuously generates fake images, creating im-

ages that are closer to real. In this process, the generated color 

image is input to the Improver again, and the predicted color im-

age is output. A loss value between the generated image and orig-

inal color image is back-propagated. This process is repeatedly 

trained to extract an optimal color image. 

4. Experiment
The experiment was conducted by applying the method pro-

posed in this paper with the same data. The output image was 

largely classified into five categories: sky, plants, sea, ships, and 

buildings. Before that, the generated image can be seen when the 

input image was put into the generator in Figure 7. 

Sky, plant, sea and building data were available at the follow-

ing: “kaggle.com/datasets/arnaud58/landscape-pictures” and 

“kaggle.com/datasets/huseynguliyev/landscape-classification.” 

Ship data were available at the following: “kaggle.com/da-

tasets/arpitjain007/game-of-deep-learning-ship-datasets.” 

12,000 elements of these three data types were properly com-

bined, of which 8,400 were learned and 3,600 were tested. 
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(a) (b) (c) 

Figure 7: Generated image (a) Input image, (b) Ground truth, 

(c) Predicted image 

(a) (b) (c) 

Figure 8: Sky in day (a) Input image, (b) Ground truth, (c) Pre-

dicted image 

(a) (b) (c) 

Figure 9: Plants in day (a) Input image, (b) Ground truth, (c) 

Predicted image 

(a) (b) (c) 

Figure 10: Sea in day (a) Input image, (b) Ground truth, (c) Pre-
dicted image 
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(a)     (b)    (c) 

Figure 11: Ship in day (a) Input image, (b) Ground truth, (c) Pre-

dicted image 

(a)    (b)    (c) 

Figure 12: Artifact in day (a)Input image, (b) Ground truth, (c) 

Predicted image 

Figure 7 shows the generated images, which contained differ-

ent types of noises like pink noise and needed improvement. Fig-

ures 8 through 12 show the predicted images: sky, plant, sea, ship 

on the sea, and building, in order. All of the images had a com-

mon feature of daytime. First of all, the sky and plant images 

were heavily affected by the environment such as fog and 

weather (season). The sea and ship images were for the same rea-

son, and the blue sea made the image itself feel blue as a whole. 

Lastly, the building was an object that mixed various colors. In 

all figures, (a) represents the Input images, that is, grayscale im-

ages, (b) represents the Ground truth, and (c) represents the color 

images predicted by applying the proposed method as a Predicted 

image. 

The structural similarity index measure (SSIM) [13] and peak 

signal-to-noise ratio (PSNR) were evaluated to quantify the col-

orization quality in this study. The SSIM is a method designed to 

evaluate human visual image quality differences and similarities, 

and compares the luminance, contrast, and structure between two 

images. The PSNR is the noise ratio for the maximum signal that 

a signal can have. It is a method designed to evaluate loss infor-

mation for the generated image. The average values extracted be-

tween the Ground truth and Predicted image measured 92.68 for 

the SSIM and 32.73 [db] for the PSNR. Compared with [14][15], 

it can be seen that the SSIM values were approximately 8% and 

4%, and the PSNR was improved by 12 [db] and 8 [db]. 

In this study, a smooth and clean color image was predicted 

without other colors invading the boundaries of objects in the im-

age as a whole through the proposed method. In particular, it can 

be seen that the first image and second image of Figure 9, the 

second image of Figure 10, and the first image and second image 

of Figure 11 were colored more naturally with their original col-

ors that Ground truth. 

5. Conclusion
Colorizing images is a deeply fascinating problem. In this 

study, grayscale images were converted into color images 

through the proposed method by inputting a day landscape that 

can be seen in everyday life. Our model verifies that it is suitable 

for automatic image colorization compared with previous studies 

[16]-[18]. Although it is not completely consistent with the 

Ground truth and Predicted image, it estimates any color and 

shows lively colorized images. Moreover, excellent results were 

shown through the SSIM and SPNR, which are representative 

image quality measurement methods. 

 However, the artifact image extracted relatively disappointing 

results as shown in Figure 12. This is presumed to be owing to a 

relative lack of training data for the artifact image, so future plans 
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will collect and experiment with a larger amount of data. Also, 

more accurate colorization is performed on the common pixel 

values that occupy most of the images. The improves the overall 

image quality, but the colorization is sometimes not accurate for 

rare pixel values. We will study areas that classify more clearly 

in consideration of the concentration of a specific pixel and im-

prove the degraded image quality as a result of extracting various 

processes. 
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