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Abstract: In this study, object recognition and detection in sound navigation and ranging (sonar) images are investigated using the 

You Only Look Once approach. Small objects in large images and sparse data pose difficulties to object detection in sonar images. To 

solve the former problem, an image-segmentation method is proposed herein. Segmentation partitions a large image into smaller sec-

tions and then recombines them after object detection is performed. Because object detections in smaller images are performed in 

parallel, the processing time does not increase significantly. Meanwhile, to solve the latter problem, a large-scale labeled dataset 

(60,000 images comprising nine classes: tire, diver, shelter, ladder, frame, drum, bedrock, pier, and sandbar) is built by applying various 

data augmentation methods (reflection, rotation, distortion, etc.). The proposed method shows favorable object recognition and detec-

tion performances, with a mean average precision score of 0.745 for 6,000 test data points. In the future, we plan to improve the 

performance by optimizing the hyperparameters and applying noise-reduction techniques at the preprocessing stage. 
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1. Introduction

Object detection, which is a technology widely used in com-

puter vision, identifies objects within a class in digital images [1]. 

In general, object detection relies significantly on optical images. 

However, object detection underwater often involves the use of 

sound navigation and ranging (sonar) images. Sonar images dif-

fer significantly from typical optical images in terms of the 

method by which they are created. Sonar images are expressed in 

highlight and shadow regions, where sound waves are directly 

reflected from objects and do not reach, respectively. Further-

more, their image quality is low because the resolution of sound 

waves is low owing to the various noises that exist underwater 

[2]. Consequently, object recognition is more difficult in sonar 

images compared with in optical images. However, sonar images 

are still used because optical waves exhibit severe attenuation 

during energy transfer, whereas sound waves are an excellent me-

dium underwater [3]. 

Various algorithms have been proposed for object detection 

[4]-[9]. However, unlike in normal images, object detection in 

sonar images is associated with numerous problems. Primarily, 

sonar images have a low resolution owing to the various noises 

that exist underwater. Moreover, most sonar images are ex-

pressed in two dimensions by projecting three-dimensional im-

ages horizontally. This two-dimensional expression is problem-

atic because objects of different heights have the same topology. 

These problems complicate the analysis of sonar images. Sonar 

images are generally acquired using autonomous underwater ve-

hicles. Hence, data sparseness occurs, and real-time object detec-

tion is necessitated. Herein, a deep learning method is proposed 

to overcome this problem. However, owing to the size adjust-

ments of images that occur during training in deep learning, small 

objects in large sonar images disappear. Moreover, sparse data 

render deep learning difficult. Hence, it is recommended to build 

training data by improving the detection performance of small 

objects via image segmentation and data augmentation. 

The remainder of this paper is organized as follows: In Section 

2, research pertaining to object detection in sonar images and the 

You Only Look Once (YOLO) approach is explained. In Section 

3, the suggested methods and data augmentation methods are ex-

plained. In Section 4, the experimental results are explained and 
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analyzed. Finally, in Section 5, conclusions are provided and fu-

ture research plans are discussed. 

2. Related Studies

2.1 Object detection in sonar images 

Sonar images show the seabed and underwater objects using 

sound waves. They appear in various forms depending on the 

method by which they are created; moreover, side-scan and for-

ward-looking sonar are typically used. Because side-scan sonar 

is primarily used to acquire information from seabed landforms 

or underwater objects, a wide range of information can be ac-

quired; consequently, the sonar image sizes are large. Figure 1 

shows an equipment used for side-scan sonar. 

Figure 1: Equipment for side-scan sonar 

Forward-looking sonar is used to avoid forward obstacles in 

water. Therefore, it acquires information from specific regions, 

and the objects are included in most of the sonar images. Figure 

2 shows an equipment used for forward-looking sonar. 

Figure 2: Equipment for forward-looking sonar 

Depending on the equipment used, as shown in Figures 1 and 

2, the sonar images created may differ. The image property 

changes for different images, and the object detection method 

must be changed to accommodate the changing property. 

    The aim of object detection using sonar images is to determine 

locations and recognize objects. Such an object detection ap-

proach is used in fields such as seabed detection, fish identifica-

tion, and tracking [6]-[7]. Conventionally, this type of object de-

tection using sonar images is performed manually by profession-

als owing to difficulties in analyzing sonar images. Recently, to 

overcome this problem, three-dimensional sonar images were 

used, and object detection was performed using deep learning 

[8]-[10]. In this study, the difficulty in object detection was alle-

viated using deep learning. Labeled data are required when ap-

plying deep learning methods. However, sonar images have a low 

resolution and are unfamiliar; hence, training data are difficult to 

build. Therefore, the effort required to build training data must 

be reduced. Various existing data generation methods have been 

investigated via these efforts [11]-[12]. However, the previously 

investigated data generation methods are complicated and unsuit-

able for object detection, e.g., the faster-RCNN [13] and YOLO 

[4]. Therefore, a simple data augmentation method for data gen-

eration is proposed herein.  

Object detection in sonar images is performed on board ships 

or divers underwater. Hence, the closer the object detection is to 

real time, the higher is the efficiency. Therefore, to perform ob-

ject detection in real time, investigations using various sonar im-

ages have been performed [14]-[16]. In this study, to perform ob-

ject detection as closely as possible to real time, YOLO, which 

shows high performance in real time, was used. 

2.2 YOLO 

Among the various object detection techniques, YOLO was 

used in this study. YOLO demonstrates good performance in 

terms of execution time as it is a one-stage detector that performs 

two steps simultaneously; furthermore, it is not a two-stage de-

tector that requires the separate prediction and classification of 

object candidate regions [5].  

Figure 3 shows the object detection method using YOLO [5]. 

YOLO is based on a convolutional neural network; it is a method 

in which an object is detected via non-max suppression through 

the network after the size of the input image is changed.  

Figure 3: YOLO system [5] 

Figure 4 shows an example of object detection using a basic 

YOLO network. 

Figure 4: Example of YOLO object detection 
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The input image is partitioned into S × S grid cells. If the center 

of a specific object corresponds to the center of the grid cell, then 

the corresponding grid cell performs object detection [5]. Each 

grid cell comprises multiple bounding boxes and probabilities of 

each class, and each bounding box contains the information of 

each class and a confidence score (CS). The information in a 

bounding box includes four pieces of information: x-coordinate, 

y-coordinate, width w, and height h. The CS represents the con-

fidence level of an object in the corresponding bounding box, and 

is calculated using Equation (1). 

CS = Pr(𝑂𝑏𝑗) ∗  𝐼𝑂𝑈𝑡𝑟𝑢𝑡ℎ 𝑝𝑟𝑒𝑑  (1) 

Intersection over union (IOU) refers to the cross-overlapping 

union. The CS in each cell has an IOU value between the value 

of the predicted box and the correct answer if an object exists, 

and 0 if it does not exist. Figure 5 shows a diagram for calculat-

ing the IOU [17]. 

Figure 5: IOU diagram 

To calculate the class CS for a bounding box, the conditional 

probability is multiplied by the CS, as shown in Equation (2). 

𝐶𝑆𝑐𝑙𝑎𝑠𝑠𝑖
= Pr(𝐶𝑙𝑎𝑠𝑠𝑖  | 𝑂𝑏𝑗) ∗ Pr(Obj) ∗  𝐼𝑂𝑈truth pred

= Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗  𝐼𝑂𝑈truth pred   (2) 

Subsequently, the size of the tensor is expressed as S × S × (B 

× 5 + C), where S is the number of grid cells, B the number of 

bounding boxes, and C the number of classes.  

3. Object Detection System

3.1 Object detection system 

The sonar-imaging equipment used in this study was a side-

scan sonar and forward-looking sonar. Therefore, object detec-

tion was performed differently in this study. In addition, the ob-

ject detection algorithm uses YOLO for real-time searches and 

achieving high performance, as described in Section 2. Figure 6 

illustrates the overall process of the object-detection system. 

Object detection is performed in the deep seabed using side-

scan sonar. By contrast, object detection near the surface of water 

or detecting objects floating in water is performed using forward-

looking sonar. Detailed descriptions are provided next. 

3.2 Segmentation 

YOLO resizes an input image based on its nature. This causes 

small objects to disappear. To overcome this problem, image seg-

mentation was proposed. Segmentation is a method for perform-

ing object detection by partitioning a large raw image into several 

smaller input images. Therefore, it is applied to side-scan sonar 

data and not forward-looking sonar data. Figure 7 shows an ex-

ample of image segmentation using side-scan sonar.  

Figure 7: Example of segmentation 

Figure 6: Process for object detection system 



Min-Seok Choiㆍ Young-Seock Ohㆍ Seung-Soo Parkㆍ Jae-Hoon Kim 

Journal of Advanced Marine Engineering and Technology, Vol. 46, No. 1, 2022. 02   34 

When segmentation is applied, the segments overlap because 

an object may lie on the boundary dividing the segments. Addi-

tionally, YOLO is performed in parallel on the segmented images 

to reduce the execution time. Subsequently, the final object de-

tection result is obtained via a merging process (refer to Section 

3.4). 

3.3 Multi-YOLO 

Because forward-looking sonar does not apply image segmen-

tation, object detection is performed using a single YOLO model. 

By contrast, side-scan sonar performs object detection by config-

uring multiple YOLO models. The learned YOLO model is the 

same for both forward-looking and side-scan sonar. Figure 8 

shows an example of multi-YOLO object detection. 

Figure 8: Example of multi-YOLO object detection 

3.4 Merging 

In image segmentation, because multiple inputs are used, mul-

tiple outputs are yielded. Therefore, the results should be merged 

back into one image similar to the input image. If the object de-

tection results overlap during merging, the largest resulting value 

is selected as the final value, as in the nonmax suppression 

method.  

Figure 9: Example of merging 

Figure 9 shows an example of the merging process. In terms 

of the object detection result, the red and blue boxes represent the 

tire and drum, respectively. 

3.5 Labeling 

    Basic raw data were required to perform data augmentation. 

Labeling [18] was used to produce raw data. A rectangle was used 

to assign the position of an object to the raw datum, and the class 

of the object was selected subsequently. By performing labeling, 

2,000 basic side-scan sonar images and 4.000 basic forward-

looking sonar images were produced. Based on the prepared raw 

data, data augmentation was performed (Section 3.6). 

3.6 Data augmentation 

    To use YOLO, high-quality data are required for training. Data 

augmentation is a method of increasing the amount of data in sit-

uations where such data are insufficient [19]. The primary meth-

ods of image data augmentation include adding Gaussian noise, 

color inversion, blur, contrast, inversion, segmentation, and crop-

ping [20]. In this study, data augmentation was performed using 

Imageaug [21]. Furthermore, methods that are not suitable for 

sonar images, such as color inversion and blur, were excluded 

from the study.  

Figure 10: Data augmentation method 

Figure 10 shows the data augmentation method. Data augmen-

tation was performed twice to build the first augmented dataset, 

followed by the second augmented dataset. For the first aug-

mented dataset, horizontal and vertical inversion, 90° rotation, 
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and distortion were applied to the raw data. For the second aug-

mented dataset, the raw data were rotated by 180° and 270°. Ad-

ditionally, distortion was added to the data of horizontal and ver-

tical inversions and 90° rotations among the first augmented data. 

4. Experiments and Analysis

4.1 Experimental data 

     Side-scan sonar images were captured in an actual ocean. 

Figure 11 shows an example of a side-scan sonar image.  

Figure 11: Example of side-scan sonar image 

In this study, the side-scan sonar image included six classes of 

objects (rock, pier, shelter, sandbar, tire, and drum). The side-

scan sonar images were large, i.e., they measured 2250 × 898. 

Moreover, they varied significantly in terms of size from large 

objects such as piers to small objects such as tires. 

Figure 12: Example of forward-looking sonar image 

Unlike side-scan sonar, forward-looking sonar uses sonar im-

ages captured in an artificial water tank rather than an actual 

ocean. Figure 12 shows an example of forward-looking sonar. 

The forward-looking sonar included six classes of objects (tires, 

divers, shelters, ladders, and drums). The forward-looking sonar 

images measured 334 × 225 pixels and were smaller than the 

side-scan sonar images, as they were captured in an artificial wa-

ter tank. The size difference between the objects was insignifi-

cant.  

In this study, 2,000 raw side-scan sonar image data points were 

augmented to 20,000 data points. Meanwhile, 4,000 raw forward-

looking sonar image data points were augmented to 40,000 data 

points. Here, 10% of the images were used as the test data. Table 

1 lists the statistics for the training and testing data. 

Table 1: Statistics of training and test data 

Side scan sonar Forward looking sonar 

Raw 1st DA 2nd DA Raw 1st DA 2nd DA 

Train 1,800 9,000 18,000 3,600 18,000 36,000 

Test 200 1,000 2,000 400 2,000 4,000 

※ DA: Data Argumentation  

4.2 Experimental method 

Based on the trained YOLO model, the performance was eval-

uated using data that were not used for training. The mean aver-

age precision (mAP) was used to evaluate the performance. The 

mAP is a performance evaluation method used in many object 

detection tasks, and its precision and recall are measured based 

on the classification shown in Table 2.  

Table 2: Confusion matrix for classification 

Confusion matrix 
Prediction 

Positive Negative 

Correct 
Positive True Positive(TP) False Negative(FN) 

Negative False Positive(FP) True Negative(TN) 

The equations for precision and recall are shown in Equation (3). 

Precision =
TP

TP+FP
, Recall =

TP

TP+FN
 (3) 

Figure 13: Example of precision–recall graph 

In object detection, true positives (TPs) and false negatives 

(FPs) are determined based on the IOU values described in Sec-

tion 2. Figure 13 shows an example of a precision–recall graph 

based on the precision and recall formulas shown in Equation 
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(3). Average precision (AP) corresponds to the yellow area, and 

the mAP is the average AP in each class. 

4.3 Determining segment size 

In image segmentation, the number of segments affects the 

performance. Therefore, this number was determined experi-

mentally. Figure 14 shows the results of segmentation perfor-

mances based on the number of equal horizontal and vertical 

segments (x-axis). For instance, 5 × 3 on the x-axis has a corre-

sponding value on the y-axis, which shows the result of parti-

tioning the width into five equal segments and the height into 

three equal sections. The last row shows the result of segmenta-

tion based on the input size of YOLO. 

Figure 14: Graph showing splitting performance 

   Figure 14 shows that a better performance was achieved when 

segmentation was performed on both the horizontal and vertical 

directions compared with when segmentation was performed on 

only one of the directions. Moreover, a high value was obtained 

when segmentation was performed based on the input size of 

YOLO. An analysis of these results show that the standard for 

segmentation can be adjusted based on the basic YOLO input 

size. Based on the experimental results, segmentation was per-

formed by partitioning the width and height into five and three 

segments, respectively. 

4.4 Side-scan sonar results 

An experiment was conducted on 2,000 basic images, but the 

results were unsatisfactory, as shown in Table 3. This low per-

formance was speculated to be caused by insufficient data. 

Therefore, to expand the data, the first data augmentation was 

performed by applying the data augmentation method described 

in Section 3. The first data augmentation step significantly im-

proved the performance. Subsequently, a second data augmenta-

tion step was performed. Comparing the results of the first and 

second data augmentations, the performance of small objects 

such as tires and drums was lower than that of relatively larger 

objects such as bedrock, piers, and shelters. It is speculated that 

this occurred because the objects of interest were smaller than the 

sonar images for input. Hence, an experiment was performed us-

ing image segmentation. Consequently, the detection perfor-

mance for small objects increased significantly.     

Table 3: Performance of object detection based on side-scan sonar 

class Raw 1st DA 2nd DA 
Segmenta-

tion 

rock 0.523 0.631 0.687 0.695 

pier 0.512 0.644 0.691 0.690 

shelter 0.468 0.627 0.702 0.721 

sand 0.421 0.501 0.609 0.623 

tire 0.377 0.463 0.501 0.584 

drum 0.336 0.467 0.512 0.578 

mAP 0.440 0.556 0.617 0.649 

micro 

average 
0.431 0.552 0.616 0.648 

4.5 Forward-looking sonar results 

Table 4 presents the results from 2,000 images, including three 

objects (tires, divers, and shelters).  

Table 4: Performance of object detection under forward-looking 

sonar 

The number of object classes in the front-looking sonar was less 

than that in the side-scan sonar, and hence different from the ac-

tual environment. Therefore, after an experiment was performed 

on the basic data, an additional experiment was conducted using 

2,000 additional images with three objects (ladder, frame, and 

drum). To improve the low performance of the basic experiment, 

the first and second data augmentations were performed in the 

same manner as the side-scan sonar. Unlike side-scan sonar, be-

cause the input images were not large and the objects to be de-

tected were not small compared with the input images, segmen-

tation was not applied in the forward-looking sonar. 

class 
Raw 

(class 3) 

Raw 

(class 6) 
1st DA 2nd DA 

tire 0.441 0.449 0.621 0.784 

diver 0.378 0.381 0.609 0.728 

shelter 0.481 0.491 0.657 0.792 

ladder X 0.379 0.568 0.709 

frame X 0.394 0.581 0.721 

drum X 0.427 0.612 0.737 

mAP 0.433 0.420 0.608 0.745 

micro 

average 
0.431 0.419 0.608 0.745 
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4.6 Analysis results 

Figure 15 shows the results of a correctly identified tire. 

Meanwhile, Figure 16 shows the result of incorrectly classifying 

a frame as a tire.  

Figure 15: Correct result of tire 

Figure 16: Error type 1: (frame incorrectly classified as tire) 

Figure 17 shows error type 2, where the correct object is a 

drum. However, in real object detection, both the drum and shad-

ows that appear behind it are recognized as tires. As shown in Ta-

ble 4, an error occurs when the location of an object is identified 

but incorrectly classified, or when noise is recognized as an ob-

ject. It is speculated that this problem occurs because outlines and 

shadows naturally occupy most of the sonar images, unlike in 

optical images. Even when the objects are different, if the out-

lines and shades are similar at certain angles, the object cannot 

be recognized or classified correctly. Solving this problem will 

likely improve the performance. 

Figure 17: Error type 2: (drum shadow incorrectly classified as tire) 

4.7 Discussion 

Table 5 presents a comparison between this study and other 

studies pertaining to sonar object recognition. 

Table 5: Comparison between this study and other studies 

No mAP data Note 

1[4] 0.83 NSWC 
4 classes, large 

objects, and DA 

2[22] 0.75 Geometric image Simple shapes 

3[23] 0.74 NSWC 
4 classes, 

and large objects 

4 0.649, 0.745 
Self-constructed 

data 

9 classes, various 

sizes of objects, 

and DA 

 As shown in Table 5, the performance differs depending on 

the experimental environment. Nos. 1 and 3 show data released 

by the Naval Surface Warfare Center (NSWC). The data provided 

by the NSWC comprises four classes, and the objects are large. 

In addition, in No. 1, data are augmented via active learning. No. 

Table 6: Confusion matrix for objects 

Prediction 

rock pier shelter sand tire drum diver ladder frame 

Correct 

rock 254 0 17 2 0 2 1 0 0 

pier 0 261 3 3 1 4 1 7 14 

shelter 22 7 788 12 25 25 14 14 13 

sand 7 5 15 229 23 21 17 19 17 

tire 0 1 13 9 792 28 15 14 15 

drum 1 0 11 17 21 731 19 17 20 

diver 2 1 15 21 19 17 552 16 15 

ladder 0 9 16 14 21 27 21 477 24 

frame 1 22 16 14 37 15 19 50 488 

none 44 42 64 52 71 77 71 78 79 
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2 shows data that have been self-constructed in various shapes. 

No. 4 shows the result of this study. A comparison of the results 

shows that a simpler object image yielded a higher performance. 

Moreover, although the same method was not employed in Nos. 

1 and 3, it was assumed that they benefitted from data augmen-

tation, based on the experimental results of this study and that the 

same data were used. Finally, it was inferred that the performance 

deteriorated as the number of classes increased. 

5. Conclusion and Future Studies

An object detection method using YOLO for sonar images 

was proposed herein. A small amount of training data was 

learned by applying data augmentation methods described ear-

lier. Furthermore, an object detection method was proposed us-

ing a single model that varied depending on the sonar-image 

equipment. Specifically, by performing image segmentation on 

sonar images with large input sizes and object detection with 

several smaller images, a model was proposed. The respective 

settings yielded mAP values of 0.649 and 0.745. However, the 

performance was generally lower compared with that of optical 

images. Hence, in future studies, more methods will be inves-

tigated to increase the AP score by applying hyperparameters 

as well as removing noise and background. 
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