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Abstract: The ocean covers approximately 71% of the total surface area of Earth and plays a significant role in maintaining the envi-

ronment and ecosystems. Oil spills are the largest source of pollution in the ocean, mainly Bunker C oil and diesel oil used as vessel 

fuels. Therefore, oil spill detection is essential for marine protection, which motivated this study. Detection with radar, which is based 

on electromagnetic waves, is achieved using satellite synthetic aperture radar (SAR); thus, real-time detection over a small range is 

difficult. Hence, in this study, an oil spill detection system based on thermal imaging using a long-wave infrared (LWIR) camera is 

proposed. The oil spill detection algorithm utilizes the You Only Look Once (YOLO) model, which is widely used for object detection. 

In addition, 1,644 thermal images were labeled to evaluate the proposed system. The training and test results showed an accuracy of 

96.91% and false alarm rate of 8.33%. An improved detection performance can be expected from subsequent experiments using larger 

image datasets. 
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1. Introduction
The ocean accounts for approximately 71% of the surface of 

Earth and plays a key role in maintaining various environments 

and ecosystems. A polluted ocean and its compromised ability to 

fulfil its roles will either exacerbate global warming or destroy 

marine ecosystems, triggering calamities to humanity. Therefore, 

the development of technologies for marine pollution detection 

is essential. 

Oil is the largest source of pollution in the ocean and has se-

vere impacts after discharge [1]. Bunker C and diesel oils, which 

are used as vessel fuels, are mainly spilled. Thus, the number of 

spills has increased along with the annual increase in vessel ac-

cidents [2]. 

Marine oil pollution detection technologies can be classified 

into two methods: electromagnetic wave-based detection using 

radar and image-based detection using cameras [3]. Image-based 

detection requires only a camera for recording and embedded 

equipment for image analysis [4]. In contrast, electromagnetic 

wave-based detection requires the installation of equipment at the 

highest possible locations and the strong output power of an elec-

tromagnetic wave generator to increase the accuracy and widen 

the detection range. The SAR feature is typically used for elec-

tromagnetic wave-based detection because it is the satellite that 

best satisfies these conditions. This inevitably causes a delay in 

the detection of oil spills, making it difficult to perform small-

scale detection. In contrast, the image-based detection can detect 

a small range immediately and prevent large accidents in ad-

vance. 

Thus, in this study, an oil pollution detection system is pro-

posed that uses the deep learning-based algorithm You Only 

Look Once (YOLO) [5], a tool recently used in the image pro-

cessing field. 

The remainder of this paper is organized as follows. Section 2 

briefly describes the YOLO algorithm, which is the technology 

used in this study. Section 3 describes in detail the structure of 

the proposed system and Section 4 provides an evaluation of the 
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performance of the proposed system. Finally, Section 5 con-

cludes the study and discusses future research. 

2. Related Work
2.1 YOLO algorithm 

The YOLO algorithm considers the bounding box location and 

the class possibility on a video or an image as a regression prob-

lem and predicts the object type and location by analyzing the 

image only once. The YOLO algorithm divides the input video 

or image into S × S grids and measures the location of the bound-

ing box that encases the labeled object. The anchor boxes sepa-

rated by the grid and overlapped on the bounding box estimate 

the class probability p(class│object), object existence probability 

p(object), object center position (x, y), and the width and height 

of the bounding box (width, height) to measure the confidence 

score. Consequently, the YOLO network outputs two items: data 

regarding the bounding box and confidence value. Figure 1 il-

lustrates the entire process. 

Figure 1: An example of the YOLO algorithm object detection 

process 

In Figure 1, the input image is segmented with a 7 × 7 (S = 7) 

grid to estimate the bounding box and class probability (Pr(class)) 

and to combine these aspects to recognize the object location and 

class. The confidence score, as shown in Equation (1), indicates 

the existence of an object within a bounding box and the extent 

of the reflection of the corresponding class.  

confidence  score = Pr(class) × IoU       (1) 

The intersection over union (IoU) is the value of the size of the 

intersection between the answer box and prediction box divided 

by the size of their union. This indicates the extent of the overlap. 

Thus, when the intersection is nonexistent, the IoU value is equal 

to zero, whereas a complete overlap results in an IoU value of 

one. 

2.2 YOLO v5 
YOLO v5 [6] is the latest version of the YOLO algorithm re-

leased in 2020. Figure 2 shows the object detection process using 

YOLO v5. 

Figure 2: The object detection process of YOLO v5 

The major difference between YOLO v5 and its previous ver-

sion YOLO v4 [7] is the number of deep learning model param-

eters, which is one-tenth of that of YOLO v4. This is because 

YOLO was developed on Tensorflow [8] up to v4 but was imple-

mented on Pytorch [9] in v5. Another difference is the training 

method used in the deep-learning model. First, data augmentation 

is automated through scaling, color-space adjustments, and mo-

saic augmentation. Second, unlike previous versions in which the 

bounding box sizes are determined using k-means and genetic 

learning algorithms, YOLO v5 acquires them with deviations in 

the anchor box dimensions. 

2.3 Marine oil spill detection 
Marine oil spill detection technologies enable the detection of 

the location, type, and quantity of the oil spill [10]. These are 

largely classified into two methods of detection: electromagnetic 

wave-based detection using radar and image-based detection us-

ing cameras. The electromagnetic wave-based method deter-

mines the corresponding object according to the time it takes for 

the generated wave to return after its reflection on the object and 

the changes in wavelength. The image-based method determines 

an object according to its color, shape, and continuous movement 

displayed on the recorded images. 

Electromagnetic wave-based detection uses data recorded 

from the synthetic aperture radar (SAR) of a satellite to detect oil 

spills [11]. Satellite radar transmits microwaves with long wave-

lengths; thus, data can be obtained regardless of weather and time. 

As sea surfaces covered with oil reflect most of the microwaves, 

differences in values are generated in the measured data in com-

parison to the normal sea surface. 

Image-based detection uses deep learning or machine learning 

models based on recorded image data to detect oil spills [12]. In-

frared cameras are mainly used for this process. Objects in 
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infrared images differ in color depending on their thermal ener-

gies, and training data are fabricated by segmenting the images 

into frame units and labeling the range of oil spills. If a general 

camera that outputs RGB images is used instead of an infrared 

camera, there are two drawbacks. First, the difference in temper-

ature between oil spill from a ship and seawater cannot be used 

as an additional feature. The second issue is the light reflections 

from oil and seawater, resulting in additional noises in the image. 

Thus, a real-time system for detecting oil can be structured by 

employing infrared camera. 

The electromagnetic wave-based detection method has two 

disadvantages as it uses satellites. First, real-time detection is dif-

ficult. Second, transmitting microwaves from space to the sea is 

only practical for large-scale spills such as oil tanker accidents. 

In contrast, image-based detection requires only an infrared cam-

era and a small amount of embedded equipment for image anal-

ysis. An advantage of this method is the feasibility of its installa-

tion on a small ship. Therefore, an infrared camera was used in 

this study to record an artificially fabricated oil spill and build 

training data for the YOLO v5. The constructed training data 

were used to train YOLO v5 for use in an oil spill detection sys-

tem. 

3. Oil Spill Detection System with LWIR Camera
In this study, a deep learning-based oil spill detection system us-

ing a long-wave infrared (LWIR) camera is proposed, and its flow 

chart is presented in Figure 3. The detection process is divided into 

four major steps. First, an LWIR camera records thermal images. 

Second, an image extractor slices the images using frames. Third, 

an image analyzer detects oil spills from the sliced images. Finally, 

the outputs of the image analyzer as images and detection results 

are shown to the users for monitoring. The image analyzer is an oil 

spill detection system introduced in Section 2, which is based on 

deep learning using the YOLO v5 model. The image extractor re-

ceives infrared images from the LWIR camera and dissects them 

into frame units that can be used as inputs for the image analyzer. 

The dissected images additionally go through a labeling process 

according to the oil location and size such that they could be used 

as training data. The following sections provide detailed descrip-

tions of the image extractor and image analyzer. 

3.1 Infrared imaging 
An LWIR camera was used for imaging to train and evaluate 

the proposed system. Bunker C oil and diesel oil, which are 

mainly used as vessel fuels, were selected as oil types for detec-

tion. In the recording setting, an acrylic cylinder was inserted into 

a water tank filled with seawater, and oil was poured on top. An 

acrylic cylinder was used to eliminate the influence of wind. Ta-

ble 1 summarizes the types of images recorded. 

Figure 3: Flowchart of the deep learning-based oil spill detec-

tion system with LWIR camera 

Table 1: Types of videos recorded with LWIR camera 

Type Details 

Day 1 Recording after pouring oil into cylinder at 
10 a.m. 

Day 2 Floating matter (leaves and paper pieces) 
added to the Day-1 condition 

Day 3 Recording after pouring oil into cylinder at 1 
p.m. 

Night 1 Recording after pouring oil into cylinder at 
10 p.m. 

Night 2 Recording without pouring oil at 10 p.m. 

Night 3 Floating matter (leaves and paper pieces) 
added to the Night 1 condition 

3.2 Image extractor 
The image extractor receives thermal images from the LWIR 

camera, segments them into frame units, and converts them into 
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images for each frame. The proposed extractor segments the im-

ages into units of 10 frames. Segmented images used as data for 

the experiments are immediately delivered to the image analyzer, 

and those used as training data underwent an additional labeling 

process. The oil locations are marked on the images and the oil 

types are recorded. An example of labeling performed on a seg-

mented image is shown in Figure 4. Bunker C oil (Bunk C) and 

diesel oil (DU) labels were attached to each oil mass and poured 

into the cylinders. 

Figure 4: An example of labeled training data 

(video type: Day 1) 

The labeled training data were transformed into vertex coordi-

nates in the form shown in Figure 5. 

Figure 5: An example of transformed training data 

Each value represents, from left to right, the class number, bound-

ing box x-coordinate, bounding box y-coordinate, width, and height 

of the object, and each vertex coordinate is considered as one bound-

ing box and saved as a text file. The bounding box data from each 

image were used as the training data for the deep learning-based 

model (YOLO v5). When training was completed by the algorithm 

described in Section 2, the oil type and location were detected from 

the input images to obtain the results as outputs. 

3.3 Image analyzer 
The image analyzer receives the dissected thermal images 

from the image extractor, detects oil spills, and outputs the data. 

The YOLO v5 deep learning model described in Section 2 was 

used in the detection process. The image analyzer performs two 

processes: training and testing. During the training process, la-

beled training data are received from the image extractor. After 

the training, the testing process is performed, where the oil spill 

is detected with only thermal images, and no labeled images are 

received as inputs. Figure 6 shows an example of the oil and 

floating matter detected on a thermal image using an image ana-

lyzer. 

Figure 6: Example of detection results from an oil pollution de-

tection system (video type: Day 2) 

4. Experiment and Evaluation
4.1 Experimental setup 

An LWIR camera was used to record each image type, as 

shown in Table 1. Each recording was performed for 10 minutes. 

The ‘DarkLabel’ program was used to construct training and test-

ing data from the recorded images. Bunker C oil, diesel oil, and 

floating material labels, and the x-coordinate, y-coordinate, 

width, and height values were attached to all acquired images 

through this program to construct the data. Consequently, 1,644 

labeled thermal image data were built. The train: verification: test 

ratio was set to 7:2:1, in which 1,151, 331, and 162 units com-

prised each category. 

4.2 Parameters and structure of deep learning model 
As hyperparameters used in the training process, the batch size 

and subdivision values were both set to 64 and the number of 

epochs was set to 61,000. The computational resources used for 

the evaluation are listed in Table 2. 

Table 2: Computational resources used in evaluation 

Type Device name 
Operating 

System 
Ubuntu 18.04.1 LTS(GNU/Linux 4.15.0-
66generic x86_64) 

Processor Intel® Xeon® CPU E5-1660 v3 @ 3.00GHz 
Memory 64Gb 
Graphics 
Feature TITAN RTX 24GB 
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CUDA 
Version 10.1 

YOLO v5 darknet53 conv.137 was used as the deep learning 

model, and the corresponding network structure is shown in Fig-

ure 7.  

Figure 7: YOLO v5 darknet53 conv.137 model architec-

ture 

4.3 Performance analysis 
The training and testing of the deep learning model proceeded 

using a model similar to that shown in Figure 7. Table 3 sum-

marizes the test results, which are expressed as a confusion ma-

trix. 

Table 3: Confusion matrix of deep learning-based image ana-

lyzer 

Confusion Matrix 
Actual class 

Total 
P0 P1 N 

Predicted 
class 

P0 67 0 1 68 

P1 0 68 1 69 

N 2 1 22 25 
Total 70 70 22 162 

% P: Positive, N: Negative 
TP: True Positive, FP: False Positive 
TN: True Negative, FN: False Negative 

The images with and without oil spills in Table 1 were ex-

pressed as positive (P) and negative (N). In addition, bunker C 

oil and diesel oil class numbers were 0 and 1, respectively. Thus, 

the true positive (TP) value indicates the frequency of accurate 

oil spill prediction, and the false positive (FP) value indicates the 

frequency of inaccurate oil spill prediction. A false negative (FN) 

indicates the frequency of inaccurate indication of no oil spill, 

and a true negative (TN) indicates the frequency of accurately 

predicted results of no oil spill. Table 4 summarizes the perfor-

mance of the evaluation results using the resources listed in Ta-

ble 3. 

Table 4: Deep learning-based image analyzer performance 

Measure Equation Value 

Precision, PPV 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
0.9854 

Recall, TNR 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
0.9783 

Mean Average 
Precision, mAP PPV × TNR 0.9640 

F1 score 
2𝑇𝑇𝑇𝑇𝑃𝑃 × 𝑇𝑇𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹𝑇𝑇

0.9818 

Accuracy 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹
0.9691 

False Alarm Rate 
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹
0.0833 

Specificity 
𝑇𝑇𝐹𝐹

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹
0.9167 

In Table 4, precision is a measure that indicates the accuracy 

of the prediction of the occurrence of oil spills, and the precision 

rate of the proposed system was 98.54%. This indicates that most 

of the prediction results were accurate. Recall is a measure that 

indicates the degree of accuracy of predicting images with oil 

spills, which was 97.83% for the proposed system. This value 

indicated that approximately 2% of the oil spill was not ade-

quately detected, which could be further reduced. The F1 score 

is the harmonic mean of the precision and recall rates, which was 

98.18% for the proposed system. Accuracy is a measure that in-

dicates the degree of accurate prediction of all classes or labels, 

and was 96.91% for the proposed system. Thus, no significant 

issues are expected to arise when this system is used as a refer-

ence to determine oil leaks from actual vessels. The false alarm 

rate is the rate of falsely predicted oil spill images in cases where 

there is no pollution. The proposed system had a false alarm rate 

of 8.33%, which is not a low value. The specificity, denoted as 1-

FPR, is the rate that indicates the accurate prediction of images 

without oil spills, which was 91.67% for the proposed system. In 

conclusion, the false-alarm rate and specificity of this system can 

be further improved. The training and testing of the proposed 
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system were conducted in highly regulated environments, and a 

small amount of data were constructed compared with other im-

age processing studies. Therefore, the results are inadequate for 

conducting field tests. This system requires further supplemen-

tary studies.  

4.4 Discussion 
The cases of previous studies described in Section 2.3 were 

compared with the method proposed in this study regarding oil 

spill detection. In the present study and that of De Kerf et al. 

(2020) [12], image-based detection was performed using convo-

lutional neural network (CNN) [13]-based deep learning models 

YOLO v5 and MobileNet, respectively [14]. In contrast, Singha 

et al. (2016) [10] performed an electromagnetic wave-based de-

tection and used ‘support vector machine (SVM)’ [15], the ma-

chine learning model. Different models were employed, because 

the form of the data varied according to the detection method. 

Image-based detection utilizes sliced recorded images in the de-

tection process. In contrast, electromagnetic wave-based detec-

tion utilizes the numerical data of microwaves transmitted and 

collected by the SAR in the detection process. Table 5 summa-

rizes the aforementioned methodologies. 

Table 5: Comparison of methodologies used in this study and 

cases referenced in Section 2.3 

Type Methodology Model Used Accuracy 

Fan Li  
et al., 2015 

Electromagnetic 
wave-based 

SAR features, 
CRF 0.9438 

Singha 
et al., 2016 

Electromagnetic 
wave-based 

SAR features, 
SVM 0.90 

De Kerf 
et al., 2020 Image-based MobileNet 0.89 

Our  
approach Image-based YOLO v5 0.9691 

Comparing the accuracy according to the time sequence, it can 

be observed that our approach has the highest accuracy. In addi-

tion, two electromagnetic wave-based methods use a machine 

learning method for classification, although they show relatively 

high accuracy. This is expected to further improve the perfor-

mance when the model is changed to a deep learning-based 

model. 

However, the oil spill detection cannot be conducted fast be-

cause it requires the use of features from SAR. Such restrictions 

have changed the direction of research toward image-based, like 

‘MobileNet’ and our approach. ‘MobileNet’ showed relatively 

low accuracy with 89%, but our approach showed the highest 

accuracy with 96.91%. This confirms that oil spills can be effi-

ciently detected with high accuracy and speed without using SAR 

features.  

5. Conclusion
In this study, an oil spill detection system is proposed and de-

veloped. The system uses images from an LWIR camera and a 

deep-learning-based YOLO algorithm that operates without spe-

cific sensors or equipment. A total of 1,644 images were detected, 

with an accuracy rate of 96.91% and a false alarm rate of 8.33%. 

This is by no means inferior compared to other methodologies, 

but it requires additional performance improvement and expan-

sion of the study purpose. For our experiments, we used a water 

tank filled with seawater. In addition, to reduce the effect of wind, 

an acrylic cylinder was used during infrared imaging. This may 

be different from actual oil spills in terms of size and shape. 

Therefore, future studies will aim to increase the accuracy of oil 

spill detection and lower the false alarm rate by not only increas-

ing the amount of data but also by increasing the types of oil 

spills. 

Acknowledgement 
Following are results of a study on the “Leaders in Industry-

university Cooperation+” Project, supported by the Ministry of 

Education and National Research Foundation of Korea. 

Author Contributions 
Conceptualization, H. M. Park and S. D. Lee; Methodology, 

H. M. Park and J. H. Kim; Software, G. S. Park; Validation, G. 

S. Park and J. H. Kim; Resources, G. S. Park and J. K. Kim; Writ-

ing—Original Draft Preparation, H. M. Park; Writing—Review 

& Editing, J. H. Kim, S. D. Lee and J. K. Kim. 

References 
[1] W. -G. Jhang, J. -H. Nam, and G. -W. Han, “Advancement 

of land-based pollutant management system,” Korea Mari-

time Institute, 2012 (in Korean). 

[2] H.-M. Park, J.-H. Kim, “Predicting sentence of ship acci-

dent using an attention mechanism based multi-task learn-

ing model,” Proceedings of The Korean Institute of Infor-

mation Scientist and Engineers, pp. 448-450, 2021 (in Ko-

rean). 

[3] D. -S. Kim, “Oil spill detection from dual-polarized SAR 

images using artificial neural network,” Master Thesis, 



Deep learning-based oil spill detection with LWIR camera 

Journal of Advanced Marine Engineering and Technology, Vol. 45, No. 6, 2021. 12       424 

Department of Geoinformatics, Graduate School of Univer-

sity of Seoul, Korea, 2017 (in Korean). 

[4] H. -M. Park, G. -S. Park, Y. -R. Kim, J. -K. Kim, J. -H. Kim, 

and S. -D. Lee, “Deep learning-based drone detection with 

SWIR cameras,” Journal of Advanced Marine Engineering 

and Technology, vol. 44, no. 6, pp. 500-506, 2020. 

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You 

only look once: unified, real-time object detection,” Pro-

ceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 779-788, 2016. 

[6] Github, https://www.github.com/ultralytics/yolov5, Ac-

cessed December 1, 2020. 

[7] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “Yolov4: 

optimal speed and accuracy of object detection,” 

arXiv:2004.10934, 2020. 

[8] Tensorflow, https://www.tensorflow.org, Accessed Decem-

ber 1, 2015. 

[9] Pytorch, https://www.pytorch.org, Accessed December 1, 

2016. 

[10] M. Fingas and C. E. Brown, “A review of oil spill remote 

sensing,” Sensors, vol. 18, no. 1, pp. 91-108, 2018. 

[11] S. Singha, R. Ressel, D. Velotto, and S. Lehner, “A combi-

nation of traditional and polarimetric features for oil spill 

detection using TerraSAR-X,” IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 

vol. 9, no. 11, pp. 4979-4990, 2016. 

[12] T. De Kerf, J. Gladines, S. Sels, and S. Vanlanduit, “Oil spill 

detection using machine learning and infrared images,” Re-

mote Sensing, vol. 12, no. 24, p. 4090, 2020. 

[13] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. How-

ard, W. Hubbard, and L. D. Jackel, “Backpropagation ap-

plied to handwritten zip code recognition,” Neural Compu-

tation, vol. 1, no. 4, pp. 541-551, 1989. 

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. 

Wang, T. Weyand, M. Andreetto, and H. Adam, “Mo-

bileNets: Efficient convolutional neural networks for mo-

bile vision applications,” arXiv:1704.04861, 2017. 

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Ma-

chine Learning, vol. 20, no. 3, pp. 273-297, 1995. 


	Deep learning-based oil spill detection with LWIR camera
	Abstract
	1. Introduction
	2. Related Work
	3. Oil Spill Detection System with LWIR Camera
	4. Experiment and Evaluation
	5. Conclusion
	References


