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Abstract: This study investigates the temperature characteristics and efficiency of a Peltier element for waste heat recovery from a 

ship. The Peltier element is calculated using its heat balance and performance. The results are as follows: 1) In the case of gas and 

water as the heat source, the temperature profile estimated from the performance and heat balance of the Peltier element generated 

deviations. 2) In the case of gas and water as the heat source, the thermoelectric scale effect changed the heat transfer rate considered 

between the heat source and the Peltier element existed. 3) In the case of water as the heat source, the thermoelectric scale effect 

changed the heat transfer rate considered between the heat source and the Peltier element did not exist. 
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1. Introduction
The world is making various efforts to reduce greenhouse gas 

(GHG) emissions, the main culprits of global warming. The Re-

public of Korea, the world’s seventh largest emitter of GHGs, 

aims to reduce GHG emissions by 37 % compared to “business 

as usual” by 2030 according to the Paris Climate Agreement. 

Measures such as the conversion from fossil fuels to new and re-

newable energies are being considered as a way to reduce GHG 

emissions. However, efforts in each industry and alternative en-

ergy resources to existing fossil fuels are required to achieve the 

2030 GHG emissions reduction goal. 

Recently, research on energy conversion has been conducted 

to recover renewable energy, such as waste heat, from industrial 

processes. Among the research on energy conversion, thermoe-

lectric power generation using the Peltier element is being stud-

ied because this element is small and simple. Moreover, research 

related to thermoelectric power generation is actively being con-

ducted [1][2].  

Thermoelectric power generation generates electricity from 

heat using the “Seebeck effect,” which generates a voltage when 

there is a temperature difference between two different types of 

metals or semiconductors, and directly recovers waste heat as 

electrical energy without using other fossil fuels. It is a material 

technology that best responds to GHG reduction policies through 

energy saving [3]. Thermoelectric device technology is widely 

applied in automobiles, aerospace/aviation, semiconductors, op-

tics, computers, power generation, and home appliances 

[4][5][6]. To apply these technologies to various fields and in-

crease the efficiency of the systems, research is being conducted 

in research institutes and companies; however, research applied 

to ships is insufficient. 

The purpose of this study is to incorporate a thermoelectric 

power generation system on a ship to recover the waste heat 

given off as exhaust gas from the ship. In addition, we intend to 

understand the temperature distribution and efficiency inside the 

system by considering the heat balance between the heat source 

and the thermoelectric element. Calculations are performed using 

MathCad Prime 3.0 in the engineering tools. 

2. Heat Source and Thermoelectric Element

Specifications of Calculation Model 
Table 1 lists the conditions of the heat source, and Table 2 

lists the specifications of the thermoelectric element. To simplify 

the analysis, it is assumed that the properties of the Peltier ele-

ment do not depend on temperature. 

Figure 1 shows the thermal analysis model. The heat balance 

between the Peltier element and the heat source is calculated fol-

lowing the procedure detailed by the conventional research of  
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an author [7] as follows: 

① Calculate the intermediate temperature Tav(=[TH+TC])/2

between the heat sources and assume that this is the same 

as the intermediate temperature between the high-tempera-

ture side and the low-temperature side of the Peltier ele-

ment. 

② In the Peltier element, the temperature difference "Thj–Tcj"

is used as a parameter, and the initial calculated values of 

the high-temperature side temperature Thj and the low-tem-

perature side temperature Tcj of the Peltier element are ob-

tained. 

③ Set the number and arrangement of modules used in the

system, and obtain the current I in the entire system from 

Table 2 and ②. Regarding the module arrangement, Table 

3 shows the calculation methods according to the case of 

arranged in series and arranged in parallel. Additionally, the  

    circuit diagram of the thermoelectric element is shown in 

Figure 2, and the external resistance Ro is estimated from 

Ro = M0R, where the conversion efficiency is maximized. 

M0 is calculated using Equation (1). 

Table 1: Heat source samples of thermoelectric generator system 

Define of heat source At the hot side At the cold side 

Heat transfer medium Exhaust gas Used coolant of lubricant Coolant 
Temperature, °C 300 80 20 

Mechanism of heat transfer Forced Convection 
Film coefficient of heat transfer, W/m2K 50 6,000 6,000 

Quality of plumbing Stainless 
Thickness of plumbing, m 0.01 

Thermal conductivity, W/mK 16.5 
Overall heat transfer coefficient, W/m2K 48.5 1,290 1,290 

Table 2: Specifications of Peltier element 

Country of Manufacture Japan 
Maker Kyocera 

Model No. 40×40 Module 
Item Unit Value 

Length mm 40 
Width mm 40 

Area, S mm2 1600 
Thickness mm 2.3 

Temperature at the hot side, Thj °C 20 
Temperature difference, ΔTj °C 67 

Temperature at the cold side, Tcj °C -47 
Average temperature, (Thj + Tcj)/2 °C -13.5 

Seebeck coefficient, α V/K 4.836×10-3 
Internal resistance, Ri Ω 1.900 

Internal resistance rate, ρi Ωm 1.322 
Internal heat conductance, K W/K 4.908×10-3 

Internal thermal conductivity, λi W/mK 7.055×10-3 
Thermoelectric figure of merit, Z 1/K 2.508×10-3 

Table 3: Peltier element arrangement 

Module Unit Single Serial Parallel Serial+Parallel 
Number ea 1 m n m×n 

Seebeck coefficient W/K α mα α mα 
Interal resistance Ω R mR R/n (m/n)R 
Heat conductance W/K K mK nK mnK 

Figure 1: Thermal analysis model of the thermoelectric gener-

ator system 
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 The current I is calculated from the electromotive force V, as 

shown in Equation (2). 

I = 𝑉𝑉
𝑅𝑅+𝑅𝑅0

= 𝛼𝛼�𝑇𝑇ℎ𝑗𝑗−𝑇𝑇𝑐𝑐𝑗𝑗�
(1+𝑀𝑀0)𝑅𝑅

         (2) 

④ In this analysis, two types are set: four in series and four

in series × four in parallel to prove the effect of heat trans-

fer. 

⑤ The energy balance at the high- and low-temperature sides 

of the thermoelectric module is shown by Equations (3) 

and (4), respectively. 

𝑄𝑄ℎ = 𝐾𝐾�𝑇𝑇ℎ − 𝑇𝑇ℎ𝑗𝑗� + 𝛼𝛼𝑇𝑇ℎ𝑗𝑗𝐼𝐼 − 0.5𝐼𝐼2𝑅𝑅     (3) 

𝑄𝑄𝑐𝑐 = 𝐾𝐾�𝑇𝑇𝑐𝑐𝑗𝑗 − 𝑇𝑇𝑐𝑐� + 𝛼𝛼𝑇𝑇𝑐𝑐𝑗𝑗𝐼𝐼 − 0.5𝐼𝐼2𝑅𝑅       (4) 

⑥ The temperature difference between the high- and low-

temperature sides of the thermoelectric element can be ob-

tained using Equation (5). 
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⑦ Equation (6) is calculated from the heat balance on the

high-temperature side of the thermoelectric element. 

𝑇𝑇ℎ,𝑗𝑗 = 𝐹𝐹2𝑇𝑇𝑐𝑐+𝐹𝐹3𝑇𝑇ℎ+𝐹𝐹4
𝐹𝐹1

   (6) 

Here, the coefficients F1, F2, F3, and F4 in Equation (6) are ob-

tained using the following equations: 
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⑧ Equation (7) is calculated from the heat balance of the

low-temperature side in the thermoelectric element. 

𝑇𝑇𝑐𝑐𝑗𝑗 = 𝐹𝐹5𝑇𝑇𝑐𝑐+𝐹𝐹6𝑇𝑇ℎ+𝐹𝐹7
𝐹𝐹1

 (7) 

Here, the coefficients F5, F6, and F7 are obtained by the following 

equations: 

𝐹𝐹5 = �1 +
𝐾𝐾 + 𝛼𝛼𝐼𝐼
𝑈𝑈ℎ𝑆𝑆

� 
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𝑅𝑅𝐼𝐼2 

⑨ For each parameter, the value obtained in Equation (5) is

compared with the values obtained by Equations (6) and 

(7), and the parameter with a small error is set as a reason-

able value. 

⑩ The conversion efficiency η in the system is calculated by

Equation (8). 

𝜂𝜂𝑇𝑇 = 𝑇𝑇ℎ𝑗𝑗−𝑇𝑇𝑐𝑐𝑗𝑗
𝑇𝑇ℎ𝑗𝑗

 , η = η𝑇𝑇(𝑀𝑀0−1)

𝑀𝑀0+
𝑇𝑇𝑐𝑐𝑗𝑗
𝑇𝑇ℎ𝑗𝑗

    (8) 

4. Calculation results
4.1 CASE 1: Exhaust gas is used as a heat source on the 

high-temperature side (arrangement of four thermoelec-

tric elements in series). 
The analysis results for CASE 1 are shown in Figure 3. The 

result of the performance of the Peltier element is the initial 

calculated value obtained in ② of Section 3, and the result of 

the heat balance shows the value calculated over ⑦ to ⑨ of 

Section 3.  

Table 4: Analysis condition 

CASE 1 CASE 2 CASE 3 CASE 4 
Connection Serial Serial × Parallel 

Number of devices 4 16(4×4) 

Heat source at high temperature Exhaust gas Cooling water from the 
low temperature part Exhaust gas Cooling water from the 

low temperature part 
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When checking the temperature difference between the heat 

source and the thermoelectric element from the value calcu-

lated by the heat balance, it can be seen that a difference of 

0.61 °C on the low-temperature side and of 47.17 °C on the 

high-temperature side occurred. The reason for this tempera-

ture difference was considered to affect the temperature distri-

bution by a phenomenon in which the overall heat transfer co-

efficient on the high-temperature side is significantly lower 

than the value on the low-temperature side. 
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Figure 3: (CASE 1) Temperature profiles of the thermoelectric 

generator system 
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Figure 4: (CASE 2) Temperature profiles of the thermoelectric 

generator system 

4.2 CASE 2: The coolant that has already completed the 

heat exchange on the low-temperature side is reused as a 

heat source on the high-temperature side (arrangement of 

four thermoelectric elements in series). 
The analysis results for CASE 2 are shown in Figure 4. Unlike 

CASE 1, it can be seen that the temperature difference between 

the thermoelectric element and the heat source did not occur in 

both the high- and low-temperature sides. This result indicated 

that the total heat transfer coefficient of the high-temperature side 

increased to a greater extent than that of CASE 1, and there was 

little difference in the total heat transfer coefficient of the low-

temperature side. 

4.3 CASE 3: Exhaust gas is used as a heat source on the 

high-temperature side (arrangement of four thermoelectric 

elements in series × four thermoelectric elements in paral-

lel: total 16). 

To confirm the effect of increasing the scale of the system, a 

calculation was performed when the number of thermoelectric 

elements was increased from four to 16 (four in series × four in 

parallel) without changing the heat source under the condition of 

CASE 1. 
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Figure 5: (CASE 3) Temperature profiles of the thermoelectric 

generator system 

The results are shown in Figure 5. 

Compared to the results of CASE 1, the results of the Peltier 

element performance showed that the temperature difference be-

tween the thermoelectric elements changed from ⁓200 °C to 

⁓110 °C. In addition, as a result of the heat balance, it was con-

firmed that the temperature difference between the thermoelec-

tric elements decreased from ⁓200 °C to ⁓110 °C. 

Looking at the result calculated from the heat balance, the tem-

perature difference between the heat source and the thermoelec-

tric element was ⁓6.8 °C on the low-temperature side and 

⁓161.5 °C on the high-temperature side. That is, by increasing 

the thermoelectric element, the temperature difference between 
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the heat source and the thermoelectric element on the low-tem-

perature side decreased, while the temperature difference be-

tween the heat source and the thermoelectric element on the high-

temperature side increased. Notably, the difference in the overall 

heat transfer coefficient affected the temperature distribution. 

In general, the thermoelectric conversion system is widely 

known because one of its advantages is that it does not affect 

scale-up/down. In this case, it can be considered that the effect of 

scale-up existed owing to the influence of the overall heat trans-

fer coefficient of the high- and low-temperature sides. 

4.4 CASE 4: The coolant that has been heat-exchanged on 

the low-temperature side is reused as a heat source on the 

high-temperature side (arrangement of four thermoelectric 

elements in series × four thermoelectric element parallel 

arrangements: total 16). 
Under the same conditions as in CASE 2, the result of the cal-

culation by increasing the number of thermoelectric elements 

from four to 16 (four in series × four in parallel) without changing 

the heat source is shown in Figure 6. 

Comparing the results of CASES 4 and 2, it can be seen that 

the temperature distribution and temperature at each point were 

almost the same. From this result, it can be considered that there 

was little effect of increasing the number of thermoelectric ele-

ments. This was considered to be because the overall heat trans-

fer coefficient on the high-temperature side and the cooling side 

was sufficiently high. 
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Figure 6: (CASE 4) Temperature profiles of the thermoelectric 

generator system 

4.5 Maximum efficiency of thermoelectric generator system 
Figure 7 shows the system efficiency of each CASE. First, if 

we check the results calculated with the heat balances of CASES 

1 and 3, the efficiency was approximately 9–7 %. 

However, it should be noted that the voltage or current of the 

thermoelectric element in this case was calculated using the val-

ues from the performance of the Peltier element. The efficiency 

in this case was 4–8 %. 

The maximum efficiency of CASES 2 and 4, where both the 

hot and cold heat sources were liquid, was ⁓2.7 %. Because the 

overall heat transfer coefficient was sufficiently high on the high-

temperature side and the cooling side, it can be seen that the tem-

perature distribution or efficiency did not change significantly 

even if the scale of the thermoelectric generator system was in-

creased. 
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Figure 7: Maximum efficiency of the thermoelectric generator 

system 

Meanwhile, for CASES 1 and 3, the efficiency was expected 

to increase further by increasing the overall heat transfer coeffi-

cient of the exhaust gas side. However, because this was related 

to the pressure loss of the exhaust gas side, more reviews are ex-

pected. 

5. Conclusion
In this study, to introduce a thermoelectric power generation 

system in a ship, the following results were derived by setting the 

specifications of the heat source and thermoelectric element, and 

estimating the temperature distribution inside the system consid-

ering the heat balance between the heat source and thermoelectric 

element. 

1. When one of the heat source media was a gas and the other

a liquid, there was a deviation between the temperature dis-

tribution data estimated from the Peltier element perfor-

mance and the temperature distribution data considered
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from the heat balance. To reduce this deviation, it is im-

portant to accurately calculate the high- and low-tempera-

ture side temperatures of the thermoelectric element to 

evaluate the Peltier element performance, including the dif-

ference in the overall heat transfer coefficient. 

2. As in CASES 1 and 3, when the medium of the heat source

was a gas on one side and a liquid on the other side, consid-

ering the heat transfer rate between the heat source and the

thermoelectric element, there was an effect of increasing

the number of thermoelectric elements. This is because the

overall heat transfer coefficient of the gas, which was the

heat source on the high-temperature side, was very low

compared to the value of the liquid.

3. In addition, when the heat source medium was liquid, the

effect hardly occurred even if the number of thermoelectric 

elements was increased. This is because the overall heat

transfer coefficient at the high-temperature side and cooling 

side was sufficiently high.
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