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Abstract: Herein, a practical method is proposed to evaluate the local stability of large-size structures by combining two methods: 

direct evaluation and model reduction. The local stability of structures can be evaluated using a direct evaluation method that investi-

gates the second variation of the local strain energy via nonlinear finite element (FE) analysis. For FE solutions with large degrees of 

freedom, the computational efficiency is improved significantly by applying the model reduction method. This combined method offers 

three primary advantages. First, it can be applied to any arbitrary part of a general structure. Second, it accounts for complicated 

interactions between local and global structures. Finally, it can be used easily by engineers in industries to reduce the computational 

cost. The effectiveness of the evaluation methodology is presented based on two numerical examples. 
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1. Introduction
Steel is typically used in civil, ship, and offshore structures. 

Steel can be used to design thin-walled structures because it is 

characterized by high strength and toughness. However, these 

characteristics are likely to cause local structural failures, primar-

ily due to buckling. Structural instability, such as buckling, is a 

very dangerous phenomenon in terms of structural safety.  

Buckling refers to the stability loss of a component structure. 

Figure 1 shows various local parts of structures (or local struc-

tures), for which local buckling is considered in the structural de-

sign. When local buckling occurs, excessive local deformation 

occurs, and the entire load resistance can be reduced signifi-

cantly. Progressive local buckling results in the global failure of 

the structure. 

The design standards for determining the resistance capacity 

of local structures involve the use of the design formula for buck-

ling and ultimate strengths, which are specified in Codes and 

Rules [1]-[12]. Problems arise when the local structure is of a 

non-typical shape that is not predefined in the formula. In this 

case, the geometry shape and load pattern of the local structure 

are idealized to a pre-defined evaluation category in the design 

formula [2][3]. However, this approach can significantly reduce 

the reliability of the formula. Further investigations into the arbi-

trary shape of local structures are essential to accurately predict 

the critical load of local buckling. To evaluate any arbitrary geo-

metric shapes, a numerical evaluation method using the nonlinear 

finite element method, which can be applied to any shape without 

limitation, is typically recommended [13]. 

Figure 1: Typical local structures in thin-walled ship and off-

shore structures: stiffened panels, cylindrical shells, brackets, and 

opening structures 

Kim and Kim [14] calculated the elastic buckling load of dou-

ble-walled bellows for dual-fuel engines through finite element 

(FE) analysis and confirmed that local buckling did not occur un-

til the design pressure. Kim et al. [15] evaluated the safety of a 

slender cantilever-type helideck structure via nonlinear FE anal-

ysis and defined the inelastic buckling load as the corresponding 
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external load when a plastic strain of 0.2% occurred. 

FE analysis is extensively performed to evaluate the stability 

of various engineering problems for thin-walled and frame steel 

structures However, the resistance capacity of local structures is 

difficult to distinguish because the local structures are included 

in a global structure with complicated interactions for a large 

structure. Hence, Zi et al. (2017) separated local behavior from 

global behaviors and evaluated the stability only for the local 

structure via nonlinear FE analysis [16]. The energy criterion of 

the local structure was investigated to evaluate its structural sta-

bility. As an extension of this method, Oh et al. [17] proposed an 

adoptable method to directly evaluate the local stability of struc-

tures. This method can fully consider complicated interactions be-

tween local and global structures without requiring local FE analysis. 

However, for an FE model with a large degree of freedom, con-

siderable computational resources are required owing to the iter-

ative solving involved to obtain nonlinear solutions. 

As a cost-effective FE analysis procedure, Oh et al. [18] pro-

posed an enhanced computational method using model reduction 

for large floating offshore structures with nonlinear structural be-

havior. The static condensation technique developed from the Guyan 

model reduction method was used [19]. The time required to com-

pute forces on the local structures with nonlinear behavior was effec-

tively reduced compared with that required in a nonlinear analysis 

involving a full FE model. 

In this paper, a practical method is proposed to evaluate local 

buckling by combining two methods reported previously [17][18]. 

The critical point at which the local structure loses its stability is ex-

plicitly determined, and its resistance capacity is quantified using the 

direct evaluation method. The computational efficiency is improved 

significantly by applying the model reduction method to an FE 

model with a significant number of degrees of freedom. The practi-

cability of the proposed method is presented based on two exam-

ples: a horizontally stiffened cylindrical shell structure with ra-

dial bulkheads, and a bracket girder in the column–pontoon con-

nection structure of the tension leg platform. The evaluation in-

volves a nonlinear finite element analysis based on the Newton–

Raphson method or the arc-length method [20]. 

The proposed method offers three primary advantages: 

 First, the method can be applied to any arbitrary part of

general structures.

 Second, the complicated interactions between local and

global structures ware fully considered without requiring

local FE analysis.

 Finally, engineers in the industry can use this method easily 

to reduce computational costs.

In Section 2, structural stability is briefly reviewed, and the 

formulation used in the proposed method is presented. In Section 

3, the performance of the proposed method is verified based on 

two numerical examples, and the computational efficiency of the 

model reduction is analyzed. Finally, the conclusions are pre-

sented in section 4. 

2. Theoretical Formulation
2.1 Variation criterion for stable state 

Structural stability refers to the phenomenon in which a struc-

ture returns to an equilibrium state when an external displace-

ment disturbance is applied to the structure under this equilib-

rium state. To maintain a structurally stable state, the potential 

energy at the equilibrium state must be minimum [21]. 

An example of abrupt snap-buckling is introduced to assess the 

structural instability, as shown in Figure 2(a). Figure 2(b) illus-

trates a truss beam with a spring that simplifies the adjacent struc-

tures. The overall behavior changes without snap-buckling if an 

additional structure is attached. 

In the equilibrium state, the potential energy of Π  is always con-

stant. If Π  is a continuous derivative, then the function of Π  may be 

expanded into a Taylor series with second-order variations in the 

equilibrium state, as follows: 

( ) ( ) 2
1 1 1,..., ,....,n n nq q q q q qδ δ δ δ∆Π = Π + + −Π ≈ Π + Π   (1) 

with 
1

n

i
ii

q
q

δ δ
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Π =

∂∑  and 
2

2

1 1

1
2

n n

i j
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q q

δ δ δ
= =

∂ Π
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where iqδ  is the small variation in the i-th generalized displace-

ment from the equilibrium state at a constant load; δΠ  and 

2δ Π  are the first and second variations of the potential energy, 

respectively. 
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(b) 

Figure 2: Schematic models of truss beam structure: (a) Truss 

only and (b) truss with vertical spring 

The conditions of equilibrium are as follows: 

0δΠ =  for any iqδ , (2a) 

or 0
iq

∂Π
=

∂
 for each i . (2b) 

According to the Lagrange–Dirichlet theorem, the equilibrium 

state is stable under a constant load if the following condition 

holds: 

2 0δ Π >  for any iqδ , jqδ . (3) 

The potential energy is calculated as follows to obtain the var-

iation criterion for satisfying the stable state of the snap-through 

problem shown in Figure 2(a): 

2
21 cos2 1

2 cos cos
EALU W E dV Pq Pqαε

α θ
 Π = − = − = − − 
 ∫ (4) 

with 1tan tan q
L

θ α−  = − 
 

, 

where E , ε , L , and A  are the Young’s modulus, strain, length, 

and section area of the truss member, respectively; α  is the initial 

angle; θ  is the applied angle; P  is the applied load; q  is the applied 

vertical displacement. 

To determine whether the equilibrium state is stable, the second-

order derivative of Π  is calculated as follows: 

( )
2

3
2

2 cos cosEA
Lq

α θ∂ Π
= −

∂
    (5) 

The truss is stable if the expression above yields a positive num-

ber, i.e., 
2

2 0
q

∂ Π
>

∂
.  

Subsequently, the following condition is yielded:  

3cos cos 0α θ− >  (6) 

By adding rigidity to the structure exhibiting snap-through, the 

change in snap-through can be investigated. Figure 2(b) shows a 

case where a grounded spring is added to the load application point. 

Considering the case of a spring in the direction of the load, the po-

tential energy with vertical stiffness can be obtained as follows: 

2
2 2 21 1 cos 12 1

2 2 cos cos 2
EALE dV Kq Pq Kq Pqα

ε
α θ
 

Π = + − = − + − 
 ∫ , (7) 

where K  is the additional grounded spring stiffness. 
To determine the stability of the equilibrium states, the second-

order derivative of Π is calculated as follows:  

( )
2

3
2

2 cos cosEA K
Lq

α θ∂ Π
= − +

∂
 (8) 

The truss is stable if the expression above yields a positive num-

ber, i.e., 
2

2 0
q

∂ Π
>

∂
.  

Subsequently, the following condition is yielded: 

( )32 cos cos 0EA K
L

α θ− + >   (9) 

Figure 3: Load–displacement curve of truss beam structure with 

vertical spring 
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The stability of the entire structure depends on the stiffness of 

the spring attached to the truss structure, as shown in Figure 3. 

A global load ( )G iP q   is applied when the displacement is iq  , 

and the local load ( )L iP q  of a part of the local structure is im-

posed. It was observed that the global load and displacement 

were correlated nonlinearly. The truss structure with zero spring 

stiffness exhibits snap buckling after the load reaches the critical 

load, ( )L cP q ,
 
as shown in curve (a). However, the entire struc-

ture may be in a stable state when the adjacent structure is rela-

tively stiff, as shown in curve (b). In other words, even if the en-

tire structure is stable, the local structure may already be losing 

stability. If additional external loads are applied, then the local 

deformation may increase rapidly. By investigating the second 

variation of the potential energy of the local structure, the time at 

which the local structure loses stability can be identified. 

When the load is constant, the formulation of the second vari-

ation of the potential energy can be simplified to a second varia-

tion of the strain energy [16]. For practical purposes, it can be 

assumed that no load change occurs due to the small external dis-

placement disturbances. When this assumption is applied, the 

term of the second-order work pertaining to the constant load 

( P ) is absent in Equations (5) and (8). Therefore, when the sec-

ond variation of the strain energy stored in the structures is from 

positive to negative, the structure loses stability. This is the en-

ergy criterion for evaluating the stability of structures. The struc-

tural resistance can be defined as the maximum load level within 

the stable load range obtained from the stability evaluation. 

2.2 Direct evaluation procedure via FE analysis 
The stability of the structure can be easily evaluated via non-

linear FE analysis. The energy criterion for the target structure is 

applied using the incremental strain energy value at each analysis 

step while incrementing the load or displacement. If the analysis 

is performed at sufficiently small intervals, then the instant-los-

ing stability can be precisely determined. In the equilibrium state, 

the second variation of the strain energy becomes the second-or-

der term of the incremental external work, based on the law of 

energy conservation. Depending on preference, the second-order 

term of the incremental external work can be evaluated as an en-

ergy criterion for stability evaluation.  

Therefore, if 2 0iWδ > , a stable state is achieved when

0.5 0.5 0i i i iδ δ⋅ ≈ ∆ ⋅ ∆ >f u f u , (10) 

where iδ f   and iδu  are the first variations of the force and dis-

placement distributions along the boundary of the local structure, 

Figure 4: Finite element models and local load ratio: (a) FE model of global structure; (b) local load distribution and its approxima-

tion; (c) second variation of strain energy, local load ratio, and displacement index 
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respectively; i∆f   and i∆u   are the incremental force and displace-

ment distribution obtained directly from the results of the nonlinear 

FE analysis, respectively; subscript i refers to the i-th analysis step.  

This method is effective for evaluating the stability of elastic struc-

tures; furthermore, it is applicable to inelastic structures based on the 

assumption that they are tangentially equivalent elastic structures 

during each small loading step. In other words, the structural stability 

of the material can be evaluated while considering its plasticity. 

Additionally, in this method, initial fabrication imperfections are 

applied to the target structure in the elastic buckling mode, which 

occurs easily in the load configuration considered. By applying the 

initial imperfections, incremental displacement disturbances corre-

sponding to the intended specific load paths induce predominant in-

stability in the structure. This method does not incur a long calcula-

tion time because it does not consider all possible displacement dis-

turbances and only reflects the displacement disturbances corre-

sponding to a specific load.  

In the direct evaluation procedure [17], the buckling failure of a 

local structure is directly evaluated from solutions of the global non-

linear FE analysis. Let us consider a global structure with a target 

local structure, as shown in Figure 4. The direct evaluation method 

can be summarized as follows: 

 (Step 1) To evaluate the stability of the local structure, the ef-

fective load component of the local structure must be defined. 

The internal load distribution at the boundary of the local struc-

ture is extracted when an external load is applied to the global 

structure. The load distribution at the boundary of the local struc-

ture while the external is increased is denoted as if . The refer-

ence load of the local structure is introduced rf   as a unit for 

measuring the magnitude of the local load distribution.  

An FE model for the global structure was constructed, as 

shown in Figure 4(a). Nonlinear incremental FE analysis was 

performed on the global structure. The external load was imposed 

incrementally with load steps i =1, 2, 3, …… First, the reference 

interface force distribution rf  (i.e., force distribution along the 

boundary of the local structure), which is selected from the re-

sults of the early load step within the linear response stage, is 

obtained. Subsequently, the interface force if is identified at each 

load step, as shown in Figure 4(b). 

(Step 2) In this step, a single scalar value that represents the 

interface force level is identified. Because the force distribution 

varies depending on the external load level, the interface force 

if  is approximated at load step i using the reference force distri-

bution rf  
( i i rλ≈f f  

with a local load ratio iλ ).
 

For the typical shapes of local structures, the applied and ref-

erence load distributions on the loaded area are typically con-

verted into single scalar loads by averaging or integrating the 

load distributions, and the ratio of these scalar loads is calculated 

as the local load ratio. However, this method is not effective for 

an arbitrarily shaped local structure because the averaged or 

summed value may be zero even if significant loads exist when 

the signs of the nodal loads are different.  

The present approximation method is proposed to overcome 

this problem in arbitrarily shaped local structures. The local load 

ratio ( iλ ) was derived using the least-squares fitting method. The 

sum squared error function ( iϕ ) of the local load is expressed as 

follows. 

( ) ( )i i i r i i rϕ λ λ= − ⋅ −f f f f   (11) 

The local load ratio ( iλ ) is calculated such that the error func-

tion ( iϕ ) has a minimum value, and this is known as the approx-

imated load method. 

i r
i

r r
λ ⋅
=

⋅
f f
f f

 (12) 

For comparison, another measure, i.e., the local load ratio ( iλ ), 

was used. It is defined as the ratio of the norm values (magni-

tudes) of the critical local load and reference local load as fol-

lows, and this is known as the norm value method: 

i i
i

r r
λ ⋅
=

⋅
f f
f f

(13) 

Because the translational and rotational degrees of freedom 

have different unit systems, it is inappropriate to calculate them 

simultaneously in Equations (12) and (13). Therefore, only the 

translational degrees of freedom of the nodal load components 

were considered in both methods to calculate the local load ratio. 

The contribution of the rotational degrees of freedom to the strain 

energy was not considered, as they are negligible in most numer-

ical problems. 
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(Step 3) The critical state, i.e., the stability limit, is determined. 

The stability limit is determined by the load level at which the 

sign of the second variation of the strain energy shifts from pos-

itive to negative at each analysis step, as shown in Figure 4(c). 

The highest local load ratio within a stable load range is selected 

as the critical local load ratio cλ . The stability of the structure can 

be evaluated by the second variation of the strain energy, which 

is obtained from the second-order term of the incremental exter-

nal work (0.5 )i i∆ ⋅∆f u . 

The displacement index was introduced to investigate tenden-

cies such as the severity of deformation at a specific load step. 

The correlation curve between the local load ratio and the dis-

placement index was derived from the strain energy at each step. 

The scalar value of the incremental displacement index ( ix∆ ) is 

calculated as follows: 

( )0.5
i

i
r i i

Wx
λ λ
∆

∆ =
+ ∆f  

, (14) 

in which iλ∆   is the incremental local load ratio. 

(Step 4) The usage factor (η ) is calculated as follows: 

s

c

λ
η

λ
=





 with 0 1η≤ ≤ , (15) 

in which sλ  is the load factor corresponding to the service load. 

The local safety factor (LSF) with an inverse form of the usage 

factor was proposed as a measure of safety in the structural de-

sign. A higher safety factor implies a safer local structure. 

1 c

s
LSF λ

η λ
= =




(16) 

The safety factor, characterized by the ratio of the load levels, 

is used to accurately evaluate the residual buckling strength of 

the local structure in a more rational manner.  

2.3 Applicability of model reduction method 

In general, the FE model of a global structure has many de-

grees of freedom, as compared with that of the local structure. In 

this case, from a computational cost perspective, it is useful to 

condense the stiffness for the degrees of freedom except for the 

region of interest using the model reduction method [18], and 

proceed to perform the nonlinear analysis only for the region of 

interest, as shown in Figure 5. A condensed stiffness is linear and 

does not require nonlinear iterations at each time; therefore, the 

computational cost can be reduced significantly. 

Figure 5: Schematic illustration of model reduction method with 

static condensation for evaluation of local structural stability 

Next, the derivation for the static condensation technique is 

presented briefly. The relationship between the displacements 

and loads in static equilibrium is expressed as follows: 

     
=    

     
11 12 1 1

21 22 2 2

K K U R
K K U R

, (17) 

where   K  is the stiffness matrix; { }U  is the displacement vector; 

{ }R  is the load vector; subscripts 1 and 2 denote the slave (re-

moved) and master (residual) degrees of freedom, respectively. 

The expression for { }2U  can be written as follows:

{ } { } − + = − + 
-1 -1

21 11 12 22 2 21 11 1 2K K K K U K K R R (18) 

Finally, the stiffness matrix   K and load vector { }R  are de-

rived based on the residual degrees of freedom of { }2U , as fol-

lows: 

   = − +   
-1

21 11 12 22K K K K K , (19a) 

{ } { }= − +-1
21 11 1 2R K K R R (19b) 

[𝐾𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡]

[𝐾𝐿𝑜𝑐𝑎𝑙]

𝐾𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑

[𝐾𝐺] {𝑈𝐺} {𝑅𝐺}

𝐾𝐿𝑜𝑐𝑎𝑙 +

[𝐾𝑅] {𝑈𝑅} {𝑅𝑅}

𝑅𝐿𝑜𝑐𝑎𝑙 +

∗ 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝐺 𝑎𝑛𝑑 𝑅 𝑎𝑟𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑛𝑑 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.
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3. Numerical Examples
3.1 Horizontally stiffened cylindrical structure with radial 

bulkheads 
In the mono-column-type structure, a stringer structure is de-

signed between the radial bulkhead and the cylindrical shell to 

resist the external pressure load, as shown in Figure 6. To inves-

tigate the behavior of the internal members of the cylindrical 

structure, a simplified and reduced-size model considering the 

local stringer area was established, as shown in Figure 7. 

Figure 6: Mono-column FPSO for North Sea field [22] and inner 

view of cylindrical shell and radial bulkhead with horizontal 

stringer in simplified model 

Figure 7: Simplified stringer model of horizontally stiffened cy-

lindrical structure with radial bulkheads 

An overall diameter of 2.0 m was considered in the FE model. 

The width and thickness of the stringer were 0.05 and 0.01 m, 

respectively. Buckling mode analysis was performed to apply an 

initial imperfection. The model geometry was modified to fit the 

first mode shape with a maximum imperfection of 2.5 mm. The 

main loads were the external uniform pressure loads. The refer-

ence (service) load was defined as 1 MPa, and the applied load 

was 100 MPa, corresponding to 100 times the reference load, 

with a load increment step of 1 MPa. To account for the force 

equilibrium, boundary conditions were considered to avoid rigid 

body motions. Four node-shell elements were used in the FE 

models. The material properties of high-tensile steel were applied 

(yield stress = 355 MPa, Young’s modulus = 210 GPa, and Pois-

son’s ratio = 0.3). A perfectly plastic stress–strain relationship 

without stress hardening was assumed for the material nonline-

arity. 

Figure 8: Second variation of strain energy in local domain of 

horizontally stiffened cylindrical structure with radial bulkheads 

Figure 9: Local load ratio–displacement index curve of horizon-

tally stiffened cylindrical structure with radial bulkheads 

The nonlinear analysis solution converged within a load of 

10.76 MPa, which was 10.76 times the reference load of 1 MPa, 

as shown in Figure 8. The structure was stable until the global 

load of 10.76 MPa because the sign of the second variation of the 

strain energy was positive. Figure 9 shows the maximum local 

load ratio, which was 10.23 times the local load, for the approx-

imated load method in the stable range. In the norm value 

method, however, the local load ratio increased steadily and was 

overestimated compared with the approximated load method af-

ter the local load ratio of 9.0. 
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The structural stability was evaluated by applying the model 

reduction method to the local stringer part considered. To im-

prove the accuracy of the analysis result, two cases were evalu-

ated for different ranges of the nonlinear analysis. One was the 

stringer region of interest, and the other was the extended range 

of the stringer with adjacent bulkheads. The stiffness of all areas, 

except the selected area, was condensed. The model reduction 

method uses both the stiffness of the region of interest and the 

condensed stiffness of the other region. Additionally, the struc-

tural stability was evaluated by applying a linear increment of the 

initial prescribed displacement. The prescribed displacement 

analysis method only uses the stiffness of the region of interest. 

Subsequently, the results of the model reduction and prescribed 

displacement cases were compared with the results of full-do-

main analysis. 

The detailed procedure for the prescribed displacement case is 

as follows. First, a linear FE analysis was performed for the 

global structure. The displacement distribution along the inter-

face between the local and global structures (or the boundary of 

the local structure) can be found. The interface displacement dis-

tribution is represented by a nodal displacement vector  u . Sub-

sequently, the FE model is conducted only for the local structure, 

and the prescribed displacement λu  with a factor λ is applied. 

It is noteworthy that the displacement distribution varies depend-

ing on the load level in the global structure; however, it is as-

sumed that the distribution does not change. By increasing the 

displacement factor representing the magnitude of the prescribed 

displacement, a nonlinear incremental FE analysis was per-

formed. Subsequently, Steps 2 to 4 in Section 2.2 were performed 

out.  

As shown in Figure 10, the nonlinear analysis was performed 

only on the stringer region of interest while model reduction was 

performed in the other regions. In addition, the analysis was per-

formed by incrementing the prescribed displacement at the initial 

reference load application. Figure 11 shows an extended nonlin-

ear analysis domain with an extended model reduction. 

Figure 10: Nonlinear analysis domain of stringer of horizontally 

stiffened cylindrical structure with radial bulkheads for model re-

duction and prescribed displacement analysis 

Figure 11: Nonlinear analysis domain of extended stringer of 

horizontally stiffened cylindrical structure with radial bulkheads 

for extended model reduction 

Figure 12: Local load ratio–displacement index curve of hori-

zontally stiffened cylindrical structure with radial bulkheads. 

Figure 13: Local safety factors of horizontally stiffened cylin-

drical structure with radial bulkheads 

The stability limits for the local strain energies for the model 

reduction, extended model reduction, and prescribed displace-

ment cases were determined based on the sign of the second var-

iation of the local strain energy. Figure 12 shows the local load 

ratio–displacement index curve for the full model analysis, model  
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reduction analysis, and prescribed displacement analysis using 

the approximated load method. The local safety factors are listed 

in Table 1 and Figure 13. Considering the result of the full model 

analysis as a reference value, the difference in the model reduc-

tion result was calculated to be 8%; however, in the extended 

model reduction case, it was reduced to -3%. The difference in 

the prescribed displacement analysis result was calculated to be 

16%; this was attributed to the prescribed displacement con-

straint of the local structure, which resulted in a greater stability 

as compared with the actual capacity. Based on comparing the 

results, it was found that the extended model reduction was the 

best method among those investigated. 

3.2 Bracket girder in column–pontoon connection struc-

ture of tension leg platform  
 The local bracket girder structure in the tension leg platform 

(TLP) hull, which has a non-typical geometry that is not applica-

ble to the conventional design formula, is presented as another 

example herein. The TLP is a vertically moored floating structure 

for deep water, as shown in Figure 14. The structural model for 

the column–pontoon connection evaluated in a previous study 

[17] was used, and further evaluation using the model reduction 

method was conducted in this study. The horizontal pontoon is 

typically connected to the vertical column, which is locally rein-

forced by a stiffener and a bracket girder, as shown in Figure 15.  

Figure 14: TLP installed in West Africa field [23] and schematic 

illustration of TLP hull with column and pontoon structures 

The initial imperfection of the bracket girder was assumed to 

be 3.5 mm in the vertical direction, and the geometry of the FE 

model was modified to the lowest local mode shape. The inner 

tank and external water head pressure were defined as the global 

reference (service) load. The structural stability of the local 

bracket girder structure was evaluated by linearly increasing the 

global reference load on the column–pontoon connection struc-

ture. 

Figure 15: Finite element model and applied loads of bracket 

girder in column–pontoon connection structure of tension leg 

platform 

Figure 16: Second variation of strain energy in local domain of 

bracket girder in column–pontoon connection structure of tension 

leg platform [17] 

Considered local bracket girder structure

External sea pressure

Internal tank pressure

 Table 1:  Local safety factors (LSF) of a horizontally stiffened cylindrical structure with radial bulkheads 

Item Full domain Model reduction 
Extended 

model reduction Prescribed displacement 

LSF 10.22 11.03 9.95 11.84 
Normalized LSF 1.00 1.08 0.97 1.16 
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Figure 17: Local load–displacement index curve of bracket 

girder in column–pontoon connection structure of tension leg 

platform 

Three and four node-shell elements were used in the FE mod-

els. The material properties of high-tensile steel were used (yield 

stress = 355 MPa, Young’s modulus = 210 GPa, and Poisson’s 

ratio = 0.3). A perfectly plastic stress–strain relationship without 

stress hardening was assumed for the material nonlinearity. 

Because the sign of the second variation of the strain energy 

was positive, the structure was stable until the external load was 

3.5 times the reference (service) load, as shown in Figure 16. As 

shown by the local load ratio–displacement index curve, the 

highest local load ratio was 3.25 when the approximated load 

method was used. However, the result of stability verification in-

dicated that the local load ratio of 3.22 was the stable state limit, 

which is the representative critical local load ratio, as shown in 

Figure 17. The first instability local load ratio based on the norm 

value method was 3.31,  

which is 2.8% higher than that obtained using the approxi-

mated load method. After the stable state limit, the local load ra-

tio by the norm value method did not decrease significantly as 

compared with the approximated method. 

The structural stability was evaluated by applying a model re-

duction method for the local bracket girder. As shown in Figure 

18, nonlinear analysis was performed only on the region of 

interest in the bracket girder. Two analysis cases were investi-

gated, namely, the model reduction of the remaining regions, and 

the prescribed displacement increment based on the reference 

displacement. Figure 19 shows the extended nonlinear analysis 

domain for the extended model reduction. 

Figure 18: Nonlinear analysis domain of bracket girder in col-

umn–pontoon connection structure of tension leg platform for 

model reduction and prescribed displacement 

Figure 19: Nonlinear analysis domain of extended bracket girder 

structure in column–pontoon connection structure of tension leg 

platform for extended model reduction 

Figure 20 shows the local load ratio–displacement index curve 

for the full model analysis, model reduction analysis, and pre-

scribed displacement analysis. The LSF values obtained using 

the approximated load method are listed in Table 2 and Figure 

21. Considering the result of the full model analysis as a refer-

ence value, the difference in the model reduction result was cal-

culated to be 12%; however, for the extended model reduction, it 

 Table 2:   Local safety factors (LSF) of bracket girder in column–pontoon connection structure of tension leg platform. 

Item Full domain Model reduction Extended 
model reduction 

Prescribed displace-
ment 

Maximum local load ratio 3.25 3.65 3.03 4.33 
Normalized max. local load ratio 1.00 1.13 0.93 1.33 

LSF 3.22 3.63 3.03 3.35 
Normalized LSF 1.00 1.12 0.94 1.04 
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Figure 20: Local load ratio–displacement index curve of bracket 

girder in column–pontoon connection structure of tension leg 

platform 

Figure 21: Maximum local load ratios of bracket girder in col-

umn–pontoon connection structure of tension leg platform 

reduced to -6%. The difference in the prescribed displacement 

analysis result was 4%, which was the lowest. However, an un-

realistic result was obtained, where the structure became stable 

in the next step immediately after the first instability of the local 

structure occurred in the prescribed displacement analysis case. 

It was found that the prescribed displacement analysis may yield 

unstable results, and that the calculated critical local load ratio 

was low compared with the maximum local load ratio shown in 

Figures 20 and 21. Therefore, the extended model reduction pro-

vided more reliable results among the reduced analysis cases. 

Figure 22: Total computing time comparison for a bracket girder 

in the column-pontoon connection structure of tension leg plat-

form. 

The computing efficiency was verified for this example, which 

involved a large degree of freedom. The required computing time 

was measured for each evaluation method, i.e., model reduction 

and prescribed displacement. The former evaluation method re-

quired a certain amount of time to perform static condensation. 

As shown in Table 2, the extended model reduction method pro-

vided the most reliable result among the reduced domain meth-

ods, except for the prescribed displacement case. In addition, the 

time required for the analysis of the local region reduced to 

11.9% (= 240/2,023) compared with the full domain, as shown in 

Table 3 and Figure 22. 

4. Conclusion
The local structure of ships and offshore structures has 

Table 3: Computing costs of evaluation domains for bracket girder in column–pontoon connection structure of tension leg platform 

Item Full domain Model reduction Extended 
model reduction 

Prescribed 
displacement 

Number 
of nodes 

Residual model 37,809 159 2,423 159 
Condensed interface 44 263 

Time 
(seconds) 

Condensation 16 54 
Iterative run 2,023 9 186 16 

Total 2,023 25 240 16 
System: GenuineIntel / 2600 MHz / RAM 251GB 

Platform: Intel linux 3.10.0-693.el7.x86_64 
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changed from a typical detailed design in the past to various 

shapes by location. Therefore, the area to evaluate the stability of 

the local structure has expanded and necessitates considerable 

computing resources.  

By applying the proposed method, the instability of the local 

structure can be explicitly identified, and the local resistance ca-

pacity can be precisely quantified based on the LSF. For large FE 

models, the analysis time can be reduced using the model reduc-

tion method, which allows nonlinear iterative solving to be per-

formed only for the local structure. Reliability and computational 

efficiency were investigated, and it was found that the extended 

model reduction method yielded the best solution.  

In future studies, the proposed evaluation method will be ap-

plied to demonstrate the strength of the local structures of various 

arbitrarily shaped ships and offshore structures. In addition, how 

to determine the extended analysis region in the extended model 

reduction method will be further investigated to increase reliabil-

ity. 
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