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Abstract: This paper proposes a method for estimating the attitude (roll and pitch angles) of an inertial measurement unit (IMU) by 

updating the coefficient of the complementary filter in real time. The complementary filter fuses the data of accelerometer and gyro-

scope using the coefficient that can compensate the shortcomings occurring when used respectively. The proposed method determines 

a proper coefficient through analyzing the attitude error in real time. Specifically, the time constant of the filter, related to the coefficient, 

is determined by the time spent for the gyroscope error exceeds the root mean square (RMS) of the attitude calculated with accelerom-

eter output. We conducted off-line analyses with experimental data to verify the performance of the proposed time-varying comple-

mentary filter. 
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1. Introduction 
An inertial measurement unit (IMU) consists of accelerometer 

and gyroscope. The IMU is mainly used to measure the position 

and attitude of an object. It calculates the changes of the attitude 

from the initial state using the angular velocity outputs from gy-

roscope and calculates the position change and linear velocity us-

ing the acceleration outputs from accelerometer. However, the 

difference between the actual states and calculated states in-

creases gradually during calculation. The main cause is an error 

accumulated while integrating the accelerometer and gyroscope 

outputs. Thus, such an error is required to be addressed to use the 

the IMU appropriately.  

Various studies on error, which causes the performance degra-

dation of the IMU, have been conducted. Park et al. [1], Flenni-

ken et al. [2] and Yu et al. [3] presented the output model of an 

IMU with error components and analyzed their effect on the cal-

culated states. Looney [4] presented the effect of linear vibrations 

caused by the inherent noise of the IMU. Park et al. [5] presented 

the effect of the output noise on calculated attitude. To improve 

the reliability and accuracy of the calculated states, two methods 

can be considered: one is to directly compensate the error com-

ponents [4][6] and the other is to estimate the states.   

Kalman filter [7]-[9] and complementary filter [10]-[12] are 

most widely used to estimate the states by fusing the outputs of 

sensors whose performance are determined by coefficients. How-

ever, the coefficients are usually fixed and it is inefficient when 

the characteristics of the motion to estimate changes irregularly. 

Various studies have been conducted to improve the performance 

of the filters. Lee [8] and Widodo et al. [9] presented adaptive 

estimation methods using Kalman filter with compensating ex-

ternal acceleration caused by the change of motion. Song et al. 

[11] and Yoo et al. [12] presented an adaptive decision method of 

cut-off frequency for complementary filter based on the pre-anal-

ysis about the motion. However, the previously proposed meth-

ods of designing time-varying complementary filters require a 

pre-analysis step to subdivide the motion and inspect their char-

acteristics to prepare appropriate coefficients, while adaptive 

Kalman filters can be applied without much setup. 

In this paper, we propose a method of deciding the coefficient 

of the complementary filter adaptively only with simple pre-anal-

ysis on the error performance of the IMU. In Section 2, we first 

look into the output of the IMU and investigate the effect of the 

noise on the attitude calculation. Section 3 introduces the method 

of updating the complementary filter coefficient using the 
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characteristics of the output that changes according to the motion 

of the IMU. Finally, the estimation performance of the proposed 

method is verified using experimental data in Section 4. 

2. Sensor Noise and its Effect to Attitude
The output of the sensor contains not only the true value but 

also the error component. Usually, the output of the sensor can 

be expressed as follows: 

𝑠𝑠𝑜𝑜 = 𝑠𝑠𝑡𝑡 + sb + 𝑠𝑠𝑟𝑟   (1) 

𝑠𝑠𝑏𝑏 = 𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑠𝑠  (2) 

where, 𝑠𝑠𝑜𝑜 is the measured value, 𝑠𝑠𝑡𝑡 is the true value of the meas-

uring state, 𝑠𝑠b is the bias, and 𝑠𝑠𝑟𝑟 is the inherent random noise. 

Major factors that contribute to the bias include deterministic 

component 𝑠𝑠𝑑𝑑 due to installation error, and scale factor compo-

nent 𝑠𝑠𝑠𝑠 due to the non-linear fit ratio of the output to the input 

over the operating temperature range. Here, the random noise 𝑠𝑠𝑟𝑟 

is assumed to be a white Gaussian noise. 

Figure 1: Definition of the coordinate systems and the attitude 

When checking the outputs of the IMU in horizontal and sta-

tionary state for a sufficient time, the expected averages for the 

outputs of the accelerometer are 0 for X and Y axes, 𝑔𝑔 (gravita-

tional constant) for Z axis, and 0 for all three axes for the outputs 

of the gyroscope. If the average is different from the expected 

value, the difference can be considered to be a bias. However, the 

temperature of the sensor is constant and the output of the sensor 

in pre-analysis step can be compared to the actual use step, the 

bias component can be ignored.  

The roll and pitch angles using the outputs of the IMU can be 

calculated by the following equations.  

𝜙𝜙A = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �𝑎𝑎𝑦𝑦
𝑏𝑏

𝑎𝑎𝑧𝑧𝑏𝑏
�  (3) 

𝜃𝜃A = 𝑡𝑡𝑡𝑡𝑡𝑡−1 � 𝑎𝑎𝑥𝑥𝑏𝑏

��𝑎𝑎𝑦𝑦𝑏𝑏�
2
+�𝑎𝑎𝑧𝑧𝑏𝑏�
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𝜙𝜙G = ∫𝜔𝜔𝑥𝑥𝑏𝑏𝑑𝑑𝑡𝑡            (5) 

𝜃𝜃G = ∫𝜔𝜔𝑦𝑦𝑏𝑏𝑑𝑑𝑡𝑡          (6) 

Here, 𝑡𝑡𝑥𝑥𝑏𝑏, 𝑡𝑡𝑦𝑦𝑏𝑏, and 𝑡𝑡𝑧𝑧𝑏𝑏 are the outputs of the accelerometer for 

each axis, 𝜙𝜙A and 𝜃𝜃A are the roll and pitch angles calculated us-

ing the accelerometer outputs, 𝜔𝜔𝑥𝑥𝑏𝑏 and 𝜔𝜔𝑦𝑦𝑏𝑏 are the outputs of the 

gyroscope for each axis, and 𝜙𝜙G and 𝜃𝜃G are the roll and pitch an-

gles calculated using gyroscope outputs. 

Since there exists the random noise in the outputs of the IMU, 

the actual outputs of the accelerometer and the gyroscope can be 

expressed as follows: 

ab = ab��� + Δab  (7) 

ωb = ωb����+ Δωb     (8) 

where, Δ𝑡𝑡 denotes the sample time, (∙)��� denotes the true value and  

Δ( ∙ ) denotes the random noise component of the output. If the 

random noise is included in the outputs, the calculated roll and 

pitch angles can be rewritten as follows [5]: 

𝜙𝜙A���� + Δ𝜙𝜙𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �𝑎𝑎𝑦𝑦
𝑏𝑏���� +Δ𝑎𝑎𝑦𝑦𝑏𝑏

𝑎𝑎𝑧𝑧𝑏𝑏
����+Δ𝑎𝑎𝑧𝑧𝑏𝑏

�   (9) 

𝜃𝜃𝐴𝐴��� + 𝛥𝛥𝜃𝜃𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 � 𝑎𝑎𝑥𝑥𝑏𝑏
����+𝛥𝛥𝑎𝑎𝑥𝑥𝑏𝑏

�� 𝑎𝑎𝑦𝑦𝑏𝑏
����+𝛥𝛥𝑎𝑎𝑦𝑦𝑏𝑏�
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+� 𝑎𝑎𝑧𝑧𝑏𝑏

����+𝛥𝛥𝑎𝑎𝑧𝑧𝑏𝑏�
2�   (10) 

𝜙𝜙G���� + Δ𝜙𝜙𝐺𝐺 = ∫�𝜔𝜔𝑥𝑥𝑏𝑏���� + Δ𝜔𝜔𝑥𝑥𝑏𝑏�Δ𝑡𝑡   (11) 

𝜃𝜃G���+ Δ𝜃𝜃𝐺𝐺 = ∫�𝜔𝜔𝑦𝑦𝑏𝑏����+ Δ𝜔𝜔𝑦𝑦𝑏𝑏�Δ𝑡𝑡   (12) 

3. Time-Varying Complementary Filter
3.1 Conventional complementary filter 

When calculating attitude with the outputs of the accelerome-

ter, the results show a large deviation occur by the high frequency 

band noise while there is drift phenomenon due to the low fre-

quency band noise in case of the gyroscope. Complementary 
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filter, which can be implemented simply through combining the 

low-pass filter (LPH) and high-pass filter (HPF) as shown in Fig-

ure 2, is widely used to compensate these shortcomings of the 

two sensors and estimate the reliable attitude. 

Figure 2: Flowchart of the conventional complementary filter 

In Figure 2, 𝜃𝜃𝐴𝐴∗ is the low-pass filtered attitude calculated us-

ing the output of the accelerometer 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐺𝐺∗  is the high-pass fil-

tered attitude calculated using the output of the gyroscope 𝜃𝜃𝐺𝐺 . 𝜃𝜃𝐶𝐶  

is an estimated attitude by fusing 𝜃𝜃𝐴𝐴∗ and 𝜃𝜃𝐺𝐺∗ . The LPF removes 

the high frequency noise in 𝜃𝜃𝐴𝐴 resulting 𝜃𝜃𝐴𝐴∗ has small deviation 

than 𝜃𝜃𝐴𝐴 and the HPF removes the low frequency band noise of 

𝜃𝜃𝐺𝐺  so that the drift phenomenon appears less in 𝜃𝜃𝐺𝐺∗  than 𝜃𝜃𝐺𝐺 . The 

transfer function of the complementary filter shown in Figure 2 

is given by 

𝜃𝜃𝐶𝐶(𝑠𝑠) = 𝜃𝜃𝐴𝐴∗(𝑠𝑠) + 𝜃𝜃𝐺𝐺∗(𝑠𝑠)  

= 1
𝜏𝜏𝑠𝑠+1

𝜃𝜃𝐴𝐴(𝑠𝑠) + 1
𝑠𝑠

𝜏𝜏𝑠𝑠
𝜏𝜏𝑠𝑠+1

�̇�𝜃𝐺𝐺(𝑠𝑠)    (13) 

where, 𝜏𝜏 is time constant that determines the operation of the fil-

ters. Equation (13) can also be expressed by Equation (14) in 

the time domain. Here, 𝛼𝛼 is the filter coefficient and represents 

the fusion ratio of 𝜃𝜃𝐴𝐴 and �̇�𝜃𝐺𝐺. 

𝜃𝜃𝐶𝐶(𝑡𝑡) = (1 − 𝛼𝛼) �𝜃𝜃𝑐𝑐(𝑡𝑡 − 1) + Δ𝑡𝑡�̇�𝜃𝐺𝐺(𝑡𝑡)� + 𝛼𝛼𝜃𝜃𝐴𝐴(𝑡𝑡)             (14) 

Meanwhile, the relationship between the time constant 𝜏𝜏 and 

the cut-off frequency 𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑜𝑜𝑐𝑐𝑐𝑐 of the filters is as follows: 

𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑜𝑜𝑐𝑐𝑐𝑐 = 1
2𝜋𝜋𝜏𝜏

  (15) 

In the point of view of frequency, the output of the LPF has a 

lower frequency band than 𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑜𝑜𝑐𝑐𝑐𝑐, and the output of the HPF has 

a higher frequency band than 𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑜𝑜𝑐𝑐𝑐𝑐. Therefore, 𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑜𝑜𝑐𝑐𝑐𝑐 can be 

regarded as the intersection of reliability between HPF and LPF. 

From this, it can be derived that time constant 𝜏𝜏 also represent 

the intersection of reliability. 

On the other hand, in the point of view of error performance, 

if drift is smaller than Δ𝜃𝜃𝐴𝐴, it can be said that 𝜃𝜃𝐺𝐺  is more reliable 

than 𝜃𝜃𝐴𝐴 . This leads to the conclusion that HPF, filtering 𝜃𝜃𝐺𝐺  , is 

more reliable than LPF, filtering 𝜃𝜃𝐴𝐴. However, if drift exceeds 

Δ𝜃𝜃𝐴𝐴, the reliability is reversed, making LPF more reliable than 

HPF. Thus, the point where drift became equal to Δ𝜃𝜃𝐴𝐴 can be con-

sidered as an intersection of reliability between LPF and HPF, 

and the time spent can be used as 𝜏𝜏 for the filter coefficient. 

3.2 Relation between Random Noise and RMS 
Random noise of the accelerometer output can be calculated 

by the following Equation (16) [4][6]. For this study, MTi-670 

(XSens) IMU was used, and the specifications of the built-in ac-

celerometer is given in Table 1. In this case, the calculated result 

is 0.0132m/s2. 

Δab = 𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁 𝐷𝐷𝑁𝑁𝑡𝑡𝑠𝑠𝑁𝑁𝑡𝑡𝐷𝐷 × �1.57 × 𝐵𝐵𝑡𝑡𝑡𝑡𝑑𝑑𝐵𝐵𝑁𝑁𝑑𝑑𝑡𝑡ℎ(−3𝑑𝑑𝐵𝐵)  (16) 

Table 1: Specifications of the accelerometer of MTi-670 

Inertial sensor Specification Unit Value 

Accelerometer 
Bandwidth(−3𝑑𝑑𝐵𝐵) [𝐻𝐻𝐻𝐻] 500 

Noise Density �μ𝑔𝑔/√𝐻𝐻𝐻𝐻� 60 

Usually, Δab  is close to the root mean square (RMS) of the 

output at a stationary state. RMS is calculated by  

𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖−𝑥𝑥�𝑖𝑖)𝑁𝑁
𝑖𝑖=1

2

𝑁𝑁
 (17) 

where, 𝑥𝑥𝑖𝑖 is the measured value, 𝑥𝑥�𝑖𝑖 is the expected value, and 𝑁𝑁 

is the size of the sample.  

Figures 3 and 4 compare Δab with 𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏  and Δ𝜃𝜃𝐴𝐴 with 𝜃𝜃𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅, 

respectively, where the IMU is stationary. Δ𝜃𝜃𝐴𝐴 is calculated by 

substituting Δab  into Equation (9). The calculated result is 

0.0763°. It appears that Δaband Δ𝜃𝜃𝐴𝐴 are similar to the RMS of 

each data when the averages of ab  and 𝜃𝜃𝐴𝐴  are taken as the ex-

pected value. The calculated RMSs are 0.0111  m/s2  and 

0.0650°. 

In the motional state, it is hard to define Δab and Δ𝜃𝜃𝐴𝐴 accu-

rately as the ratio of the motional component from the accelerom-

eter output and the attitude increases and the effect of the noise 

decreases relatively. However, they can be presumed by the sim-

ilarity of the random noise and RMS in the stationary state, that 

is, Δab and Δ𝜃𝜃𝐴𝐴 in the motional state can be replaced with their 

RMS respectively. Even if the changes of the sensor output and 
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attitude are irregular, calculating the RMS for short periods of 

time continuously will be same with calculating as if there is very 

little changes, and the results can be approximate values of Δab 

and Δ𝜃𝜃𝐴𝐴.  

Figure 3: Accelerometer outputs in stationary state (X-axis) 

Figure 4: Pitch angle in stationary state 

Figure 5: Comparison of RMS (X-axis) 

Figure 6: Comparison of RMS (pitch angle) 

Figures 5 and 6 show that the successively calculated RMS 

for short period of time (𝑁𝑁 = 10 in this case) of  ab and 𝜃𝜃𝐴𝐴 are 

similar to those of calculating results for overall data in stationary 

state. Here, the moving averages of ab and 𝜃𝜃𝐴𝐴 were used as ex-

pected values when calculating each RMS. Therefore, it may be 

inferred that the characteristics of RMS are also similar in mo-

tional state. Thus, we propose a method of updating the coefficient 

of the complementary filter using the time spent for 𝜃𝜃𝐺𝐺  to exceed 

the error range of 𝜃𝜃𝐴𝐴, based on RMS, as a time constant 𝜏𝜏. 

Table 2 shows the process of the proposed method. Firstly, 

calculate the attitudes 𝜃𝜃𝐺𝐺  and 𝜃𝜃A using outputs of the IMU, and 

then calculate the moving average of 𝜃𝜃A . If the difference be-

tween the current sample time 𝑘𝑘 and the previous sample time 

(𝑘𝑘 − 1)  of the moving average is greater than the RMS in a 

steady state, which is acquired in pre-analysis step, recognize as 

the IMU is in a motional state and increases the count 𝑁𝑁, if not, 

it will be initialized. While the motion is recognized continuing, 

the RMS of the attitude is calculated using the moving average 

�̅�𝜃𝐴𝐴 as an expected value with reference to the increasing 𝑁𝑁, and 

use it as an attitude error. When the 𝜃𝜃𝐺𝐺  exceeds the RMS range 

of the 𝜃𝜃A, update the filter coefficient using the time spent from 

previous update, memorize the currently updating sample time to 

use in next update, and initialize 𝜃𝜃𝐺𝐺  with �̅�𝜃𝐴𝐴 to remove excessive 

drift. Finally, the attitude 𝜃𝜃𝑉𝑉𝐶𝐶𝑉𝑉  is estimated. The initial value of 

the coefficient, before the initial update, can be selected as a com-

monly used value between 0.02 and 0.05. 

Table 2: Algorithm for filter coefficient update 

Pseudo code of Updating Filter Coefficient 𝛂𝛂 
𝐍𝐍 (𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜) = 𝟏𝟏, 𝐦𝐦 (𝐦𝐦𝐦𝐦𝐦𝐦𝐜𝐜𝐦𝐦𝐦𝐦) = 𝟏𝟏, 𝛂𝛂 = 𝟎𝟎.𝟎𝟎𝟎𝟎~𝟎𝟎.𝟎𝟎𝟎𝟎 
① Calculate 𝜃𝜃𝐺𝐺  and 𝜃𝜃A
② Calculate �̅�𝜃𝐴𝐴 for 𝑁𝑁

③ If ��̅�𝜃𝐴𝐴(𝑘𝑘) −  �̅�𝜃𝐴𝐴(𝑘𝑘 − 1)� > (𝜃𝜃𝐴𝐴)𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑠𝑠𝐷𝐷) 

𝑁𝑁 = 𝑁𝑁 + 1 
else 

𝑁𝑁 = 1 
④ Calculate (𝜃𝜃𝐴𝐴)𝑅𝑅𝑅𝑅𝑅𝑅(𝑚𝑚𝑁𝑁𝑡𝑡𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑚𝑚) for 𝑁𝑁

⑤ If 𝜃𝜃𝐺𝐺 > (𝜃𝜃A + (𝜃𝜃𝐴𝐴)𝑅𝑅𝑅𝑅𝑅𝑅) or 𝜃𝜃𝐺𝐺 < (𝜃𝜃A − (𝜃𝜃𝐴𝐴)𝑅𝑅𝑅𝑅𝑅𝑅)

𝜏𝜏 = (𝑘𝑘 − 𝑚𝑚)Δ𝑡𝑡 

α = Δ𝑡𝑡
𝜏𝜏+Δ𝑡𝑡

𝑚𝑚 = 𝑘𝑘 
𝜃𝜃𝐺𝐺 = �̅�𝜃𝐴𝐴

⑥ Compute 𝜃𝜃𝑉𝑉𝐶𝐶𝑉𝑉
Repeat 
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4. Performance Verification
The complementary filter, designed with proposed method, 

was implemented through Matlab to verify the estimation perfor-

mance. To confirm that the coefficient α is updated properly re-

gardless of the motion of the IMU, the data that the attitudes change 

randomly was used for the simulation as shown in Figure 7. 

Figure 7: Pitch angles in motional state 

Figure 8: Recognition of the motion 

Figure 9: Change of filter coefficient according to the motion 

Figure 10: Change of error range due to motion 

Figure 11: Comparison of attitudes in motional state (α = 0.02) 

Figure 12: Comparison of attitudes in motional state (α = 0.05) 

Figure 8 shows the change in sample size recognized that IMU 

is continuing its motion due to the difference between moving 

average, compared to the attitude error in stationary state, of the 

attitude in sample time. 

Figure 9 compares the drift of 𝜃𝜃𝐺𝐺  and error range of 𝜃𝜃A and 

shows coefficient change correspondingly. Since 𝜃𝜃𝐺𝐺  is initialized 

with �̅�𝜃𝐴𝐴, calculated for 𝑁𝑁 shown in Figure 8, at the intersections, 

reliability for 𝜃𝜃𝐺𝐺   and 𝜃𝜃𝐴𝐴  become almost same, so α  appears as 

near 0.5 at that point. As the motion continues after the coeffi-

cient update, 𝜃𝜃𝐺𝐺  gradually loses its reliability due to drift, while 

reliability of 𝜃𝜃𝐴𝐴  relatively increases. It can be seen that α  con-

verges to values between 0.02 and 0.05 when the motion is pro-

longed, which are commonly used coefficients in conventional 

complementary filter. 

Figure 10 shows the adjusted 𝜃𝜃𝐺𝐺  . As the drift is removed, 

compared to that shown in Figure 7, it does not deviate from the 

error range of 𝜃𝜃𝐴𝐴. 

In Figure 11 and 12, pitch angle estimated through varying 

complementary filter (VCF) designed with the proposed method 

is compared to that estimated with conventional complementary 

filter (CCF) whose coefficients are fixed as 0.02 and 0.05. Also, 

attitude errors with reference to the pitch angle from the IMU are 

compared. Figure 11 shows that VCF has better estimation per-

formance than CCF with a coefficient of 0.02 when the direction 

of motion changes or attitude changes rapidly within a short 
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period of time. However, for motion with small attitude changes 

without changing the direction, it shows relatively inferior per-

formance compared to CCF. Still, the degree of superior perfor-

mance is overwhelming compared to the degree of inferior per-

formance. Figure 12 shows the performance comparison of VCF 

with CCF whose coefficient has increased to 0.05. As the influ-

ence of the accelerometer in the CCF increased, the deviation of 

the estimation result increased, so that the difference in estima-

tion performance of CCF and VCF in the part where attitude 

change is small has decreased accordingly. On the other hand, as 

the influence of the gyroscope in CCF decreased, which means 

that the effect of drift also decreased, the difference in estimation 

performance of two filters has decreased in the part where atti-

tude change large as a result.  

From these results, it was confirmed that the CCF can expect 

appropriate performance by carefully selecting coefficient for 

motion to be estimated, but if the movements are diverse, the per-

formance will inevitably be focused on one side, either small or 

large motion. In addition, it was confirmed that the estimation 

error of CCF was not relatively close to zero compared to the 

estimation error of VCF. These means that unless the step of ac-

curate measurement and correction of drift is included in the es-

timation process of the CCF, the estimated result are inevitably 

affected and the performance is degraded. As a result, it was con-

firmed that the VCF proposed in this paper is free from the coef-

ficient-dependent problem of CCF and can appropriately esti-

mate the attitude of the IMU that move arbitrarily and irregularly 

by updating coefficient in real time through simple error analysis 

without complicated pre-analysis step. 

5. Conclusion
This paper proposed a coefficient update algorithm for a com-

plementary filter. The proposed algorithm analyzes attitude error 

changing in real time and determines the appropriate coefficient 

for the current motion. The results of this study can be summa-

rized as follows: 

(1) Analyzed the relationship between the calculated posture 

error and RMS using the output of the accelerometer. 

(2) Designed the method for recognizing the motion state. 

(3) Defined the method of updating the coefficient of the com-

plementary filter using time spent that the attitude calcu-

lated using the gyroscope output exceeds the error range of 

the attitude calculated using the accelerometer output. 

(4) Verified the validity of the proposed method through off-

line analysis using experimental data. 

Our future work will involve an improvement on recognizing that 

the motion continues based on precise analysis for error charac-

teristics of the IMU. Also, real application of the proposed 

method on vehicle will be involved. 
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