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Abstract: The demand for ecofriendly ships in shipbuilding and maritime industries is growing steadily. In response to strict environ-

mental regulations on shipping by the International Maritime Organization, the demand for ship machinery and equipment that carry 

ecofriendly labels, including ballast water treatment systems (BWTS), is increasing. The BWTS involves early-stage equipment error 

and fault diagnostics, and its malfunction can have major cost and time consequences. This study expands on previous research on fault 

diagnosis using the SVM, a machine learning model. The two aspects of this expansion are an increased window size range used to 

generate the features and the introduction of several machine learning models. We used 47,435 sensor data points to compare and 

analyze the results and evaluate the classification accuracy by increasing the window size range to 10. We demonstrate that the previous 

model can be easily applied to other machine learning models and that the SVM model improves performance through feature gener-

ation. The F1 score of the random forest model with the highest performance score of 99.73% indicates potential for industrial appli-

cations if accompanied by expert monitoring and verification. 
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1. Introduction
Global attention to climate-related issues has increased to en-

compass environmental regulations, such as policies for reducing 

greenhouse gas emissions. In the shipbuilding and maritime in-

dustries, the demand for ecofriendly vessels is growing in re-

sponse to strengthening environmental regulations for ships im-

plemented by the International Maritime Organization. Eco-

friendly vessels comply with emission regulations for carbon di-

oxide, nitrogen oxide, sulfur oxide, and ballast water [1]. Eco-

friendly ship equipment refers to machinery or equipment in-

stalled on ships to satisfy these regulations. 

A ballast water treatment system (BWTS) is an ecofriendly 

ship equipment that complies with ballast water discharge regu-

lations. The ballast water of a ship is channeled into the cargo 

loading area to maintain balance based on the cargo loading con-

ditions. The water is then discharged from the unloading areas at 

the destination port and is a major cause of marine ecosystem 

disruption. Strict regulations have been formulated to enforce ap-

propriate ballast water treatment before discharge. Representa-

tive ballast water treatment techniques include ultraviolet (UV) 

irradiation, ozone spraying, chemical treatment, and electrolysis 

methods [2]. 
A BWTS malfunction may cause a vessel to be denied entry 

by the authorities at the destination port. Such malfunctions lead 

to cost- and time-related damages that are significantly greater 

than the BWTS repair costs. Alongside the growing importance 

of BWTS is a fast-emerging focus on fault diagnosis technology 

capable of identifying equipment failure or error [3]. General ma-

chine or equipment failure diagnosis techniques, including those 

for the BWTS, are classified into physical model-driven and data-

driven diagnosis categories. The data-driven diagnosis techniques 

are further divided into signal and machine learning methods [4]. 
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The signal-based diagnosis method uses a range of values for 

evaluating the normal state of a sensor. If the measured sensor 

value is outside the range, failure is considered to have occurred. 

In a previous study [5], a fault diagnosis of the BWTS was per-

formed using this method. However, the limitation of the signal-

based diagnosis method is that the scope of troubleshooting is 

restricted to one sensor. Conversely, in the machine learning-

based method, the model can automatically learn the features re-

lated to the failure between the sensors using the acquired sensor 

data in the normal and failure states. 

In this study, BWTS fault diagnosis was performed using ma-

chine learning based on data obtained from five types of UV 

lamp sensors. Such sensors are the core components of UV-pro-

jection BWTS equipment. 
The proposed process involves four steps. The first step is data 

preprocessing, which entails converting BWTS sensor data from 

an operating vessel into floating-point numbers between zero and 

one. This process is essential and prevents overfitting during the 

learning process of the operation of a machine learning model, as 

there are significant differences between the minimum and max-

imum values calculated for each sensor [6]. The second step is 

feature generation, in which sequential data are converted into a 

window size. Generally, if a recurrent neural network (RNN) [7], 

a type of deep learning, is used in sequential data, all previous 

information at the time of learning is stored in hidden states. 

However, in this study, the current state of fault was diagnosed 

using only a limited amount of previous-stage data rather than a 

neural network that would require many resources for direct ap-

plication in industrial settings. The third step is model training. 

In this study, six machine learning models were trained using 

BWTS sensor data. The fourth step is a fault-diagnosing step in 

which performance evaluation was conducted by applying six 

trained machine learning models to the evaluation data. This 

study expanded on a previous study [9] in which fault diagnosis 

was performed using a support vector machine (SVM) [8] to 

compare the ranges of feature generation and fault diagnosis ac-

curacy corresponding to different machine learning models. 

The remainder of this paper is organized as follows. Section 2 

presents the sensor data fault diagnosis and machine learning 

models. Section 3 describes the BWTS fault diagnosis using sen-

sor data and machine learning-based models. Section 4 describes 

the range of feature generation and evaluation of experiments using 

machine learning models. Section 5 presents conclusions drawn 

from the results and outlines recommendations for future studies. 

2. Related Work
2.1 Fault diagnosis 

Industrial facilities are connected to building systems, with 

some facilities having complex arrangements of various complex 

devices. If a device malfunctions, the performance of the entire 

system may be affected, and the system may undergo damage. 

Monitoring techniques for devices and facilities are continuously 

being developed to prevent such incidents. Such techniques uti-

lize various types of sensors to diagnose faults and predict device 

lifespans. Such techniques are collectively referred to as prog-

nostic and health management (PHM) [10].  

The PHM technique consists of four components. The compo-

nents are as follows: (1) data sensing, in which the characteristics 

of facilities are analyzed, and sensor systems are used to detect 

abnormal conditions; (2) preprocessing and feature generation, 

in which statistical and physical characteristics related to faults 

are generated from the data collected during data sensing; (3) di-

agnosis, in which normal and fault conditions are determined 

based on the features generated during preprocessing and feature 

generation; (4) prognosis, which involves predicting the lifespan 

of the system or equipment in terms of the time until the next 

fault occurs. 

The data used in this study were collected from five types of 

sensors and measured in intervals of 1 s at the BWTS “GloEn-

Patrol” facility manufactured by Panasia Co., Ltd using the UV 

projection method. Therefore, the data generation step of the 

PHM process was not required. Feature generation through win-

dow-size-driven transformation and diagnosis was performed us-

ing six machine learning models. Table 1 lists the five types of 

sensors used for data acquisition. 

Table 1: Types of sensors used for data sensing 

Type Details 
#S FLOW Ballast water inflow outflow 
#S F_IN Filter inlet pressure 

#S F_DP Pressure difference of BWTS between in-
side and outside 

#S DOSE UV dose 
#S TEMP Temperature 

2.2 SVM 
SVM is an algorithm that performs binary classification by de-

termining the optimal linear decision boundary [8]. A decision 

boundary is a hyperplane with the maximum margin between the 

data labels. The maximum margin is the maximum Euclidean 



Performance analysis of machine learning for fault diagnosis of ballast water treatment system 

Journal of Advanced Marine Engineering and Technology, Vol. 45, No. 4, 2021. 8     224 

distance between the nearest data and the hyperplane discovered 

by the SVM. The hyperplane is expressed by Equation (1), 

where 𝑥𝑥 is the x-axis value on the hyperplane, 𝑤𝑤𝑇𝑇  is the gradient 

of the decision boundary, and 𝑏𝑏 is the maximum margin. 

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0       (1) 

𝑢𝑢1(𝑤𝑤𝑇𝑇𝑥𝑥1 + 𝑏𝑏)        (2) 

Binary classification is conducted to identify the maximum 

margin, and learning is performed to achieve the correct classifi-

cation of new data (𝑢𝑢1 ) based on the value of Equation (2), 

which multiplies the classification target of Equation (1).  

Multiclassification is performed by one-versus-rest (OvR) for 

a decision boundary for each label type or by one-versus-one 

(OvO) for the binary classification decision boundary in all cases 

[11]. The most significant difference between OvR and OvO is 

the number of decision boundaries. Because the OvR method has 

only one decision boundary, one vector is classified into only one 

class in the vector space. The OvO method constructs decision 

boundaries corresponding to each pair of existing classes. There-

fore, a vector can be divided into two or more classes according 

to the decision boundary. The final classification result of the 

OvO method is determined by the class most classified by all de-

cision boundaries. 

2.3 Logistic Regression 

Logistic regression is a binary classification algorithm that 

outputs a probability between zero and one using a logistic equa-

tion and a latent variable [12]. Logistic regression differs from 

SVM primarily in that logistic regression explores decision 

boundaries using logistic equations. The hyperplane is deter-

mined using Equation (3), where �⃗�𝑥 is the input vector, 𝑌𝑌 denotes 

the classified class of �⃗�𝑥 , and 𝛽𝛽𝑇𝑇����⃗  is the gradient vector corre-

sponding to the values inside �⃗�𝑥. 

log( 𝑃𝑃(𝑌𝑌=1|𝑋𝑋=�⃗�𝑥)
1−𝑃𝑃(𝑌𝑌=1|𝑋𝑋=�⃗�𝑥)

) = 𝛽𝛽𝑇𝑇����⃗ �⃗�𝑥   (3) 

Binary classification is performed based on if the right side of 

Equation (3) is less or greater than zero. 

Multiclassification is performed by subtracting the probability 

that the data correspond to a specific label from 1 using the OvR 

method of SVM. 

2.4 k-Nearest Neighbors (k-NN) 

A k-NN algorithm is a machine learning algorithm that per-

forms classification based on the Euclidean distance between 

each data point using a user-defined constant k [13]. Each labeled 

multidimensional characteristic space vector is used as the learn-

ing data element. The Euclidean distance for each data element 

is a k label based on the user-defined constant k. 

2.5 Multilayer Perceptron 

A perceptron is a basic neural network model whose workings 

are based on neuronal activities. It is an algorithm that produces 

an output from multiple inputs [14]. Each perceptron outputs a 

value of one if the weighted sum of the inputs exceeds a given 

threshold; otherwise, the output value is zero. 

A multilayer perceptron is a structure with several layers 

stacked to ensure that the output of a perceptron is used as an 

input into another perceptron. When a multilayer perceptron is 

used in a multiclassification task, as many perceptrons as the 

number of labels in the last layer (zero and one are output accord-

ing to each label) are arranged. 

2.6 Random Forest 

A random forest is an ensemble machine learning model based 

on a decision tree algorithm [15] that prevents the overfitting of 

decision tree tasks. It completes the process of bootstrap aggre-

gation, in which the number of learning data elements for gener-

ating each decision tree and its features are selected as a subset 

of the total number. 
A decision tree algorithm proceeds with learning in the direc-

tion in which the information gain is maximized for each branch 

node. The information gain is determined using Equation (4), 

where S is the data set arriving at a node, 𝑆𝑆𝑓𝑓 is the data set enter-

ing the left or right child node of the S node, and 𝐻𝐻(𝑆𝑆) is the 

Shannon entropy of the S data set. 

 I = H(S) − ∑ �𝑆𝑆𝑓𝑓�
|𝑆𝑆|
𝐻𝐻(𝑆𝑆𝑓𝑓)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓        (4) 

This value is obtained by subtracting the entropy value of the 

child nodes from the entropy value of the parent node. Maximiz-

ing information gain refers to learning in a direction that reduces 

the complexity of the classification result as the number of tree 

branches increases. 
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2.7 eXtream Gradient Boosting (XGBoost) 
XGBoost is an ensemble machine learning model based on a 

boosting method, unlike the random forest algorithm, which is 

based on the bootstrap aggregation method. In contrast to boot-

strap aggregation, boosting uses a decision tree as a weak classi-

fier and reteaches the following decision tree by assigning 

weights to data elements that have failed to be classified precisely 

[16]. The objective function is expressed by Equation (5), and 

minimal learning should proceed. 

obj = ∑ 𝑙𝑙(𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑡𝑡′) + ∑ 𝛺𝛺(𝑓𝑓𝑘𝑘)𝐾𝐾
𝑘𝑘=1

𝑛𝑛
𝑡𝑡=1         (5) 

In Equation (5), Ω is the weight function used for regulariza-

tion to prevent overfitting, 𝑢𝑢𝑡𝑡 is the correct answer class of the 

input data, 𝑢𝑢𝑡𝑡′  is the class predicted by the model, and the 𝑙𝑙 func-

tion is the loss function for the difference between 𝑢𝑢𝑡𝑡 and 𝑢𝑢𝑡𝑡′ . 

3. BWTS Fault Diagnosis

Using Machine Learning Models 
In this paper, we present a fault diagnosis system using five 

types of sensor data extracted from the UV lamps of a BWTS. 

UV lamps are core components for achieving the function of a 

BWTS. Sensor data for the ballast water flow rate, pressure, and 

temperature were selected as training data to check the normal 

operation of UV lamps and a BWTS. The proposed system com-

prises four steps, as shown in Figure 1. 

Figure 1: Operating sequence of proposed fault diagnosis system 

The first step is data preprocessing, in which the values of sen-

sor data with different output values are converted into real num-

bers between zero and one. The second step is feature generation, 

in which the features necessary for machine learning are gener-

ated. The third step is training, in which machine learning models 

are established using the generated features. The fourth step is 

the diagnosis, in which the trained machine learning models are 

applied to the evaluation data. 

3.1 Data preprocessing 
The machine learning models used in this study were classified 

according to the algorithm formula of each model. However, if 

significant differences exist between the input feature values, 

classification performance may deteriorate, or overfitting may 

occur. For the sensor data, the range of values calculated for the 

sensors may vary significantly, depending on the fields or units 

measured using the sensors. Table 2 list an excerpt from typical 

sensor data. 

The #S F_DP sensor had a value ranging between 0.12 and 

0.26, but the #S FLOW sensor had a value ranging between 478.0 

and 513.0 (Table 2). If the difference is used as learning data for 

the machine learning model without scaling, performance degra-

dation or overfitting may occur. 

Methods for adjusting the numerical ranges include standard 

scaling and minmax scaling [4]. In this study, the sensor data 

were scaled to floating-point numbers between zero and one us-

ing minmax scaling, as expressed by Equation (6). 

𝑥𝑥� = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
  (6) 

In Equation (6), x is the raw data value measured by a sensor 

at a specific time, and xmax and xmin are the maximum and mini-

mum values, respectively, measured by the sensor throughout the 

entire period. 

Table 2: Parts of acquired normal data 

Time 
(sec) FLOW F_IN F_DP DOSE TEMP 

1 513.0 1.05 0.12 317.2 25.7 
2 493.5 1.22 0.13 324.5 25.8 
3 491.1 1.25 0.14 332.7 25.8 
4 487.5 1.26 0.15 334.3 25.8 
5 486.7 1.27 0.16 335.4 25.8 
6 484.8 1.27 0.18 335.1 25.7 
7 483.1 1.29 0.21 335.2 25.8 
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8 480.2 1.30 0.22 337.6 25.8 
9 478.0 1.31 0.24 338.6 25.9 
10 479.9 1.33 0.26 339.9 25.9 

3.2 Feature generation 
Time-series data were collected repeatedly for a specific pro-

cess over a particular period. A typical deep learning model that 

uses time-series data is the RNN, which uses all data input before 

each learning step. A feature is generated to predict the current 

situation using a number n of previous observations, considering 

the specificity of the industrial sites. This approach is in contrast 

to neural network-driven models that require extensive learning 

resources. 
Suppose a row of sensor data is x. All the acquired time-series 

sensor data can be represented by (x1, x2, …, xn). Because of the 

characteristics of time-series data, using only one row x for learn-

ing may adversely affect the performance of machine learning 

models. Therefore, in this study, the data for the stage belonging 

to a window were generated as new features while moving the 

window, whose size was fixed at values ranging from 1 to 10. 

Window refers to the continuous number of x to be used as the 

input data. For example, if the window size was set to 2, features 

were generated in the form of [(x1, x2), (x2, x3), …, (xn-2, xn-1), (xn-

1, xn)], and if the window size was expanded to 3, the features 

were generated in the form of  [(x1, x2, x3), (x2, x3, x4), …, (xn-2, 

xn-1, xn)]. 

In this feature-generation method, an effective window size 

analysis is necessary for each machine learning model. As the 

window size increases, the time-series data characteristics im-

prove, and the data size used by the machine learning models also 

increases. Therefore, the classification accuracy is evaluated ac-

cording to the window size. 

3.3 Model training 
Unlike in previous studies in which fault diagnosis was per-

formed using SVM only, five additional machine learning mod-

els were used in this study. Table 3 lists the machine learning 

models used for fault diagnosis. 

Table 3: Machine learning models applied to fault diagnosis system 

No. Machine learning models 
1 SVM (Support Vector Machine) 
2 LR (Logistic Regression) 
3 k-NN (k-Nearest Neighbors) 
4 MLP (Multi-layer Perceptron) 

5 RF (Random Forest) 
6 XGBoost (eXtream Gradient Boosting) 

The BWTS fault diagnosis task is converted into a multiclas-

sification process that produces 11 labels as outputs, that is, the 

normal state and 10 fault states for five types of sensor data from 

the machine learning models. Scikit-learn [17], a module of the 

Python programming language, was used to implement, learn, 

and evaluate each model, and default values were borrowed for 

all model parameters. 
SVM and LR models use the OvO (R) method to perform mul-

ticlassification. OvO (R) is a method that splits multiple classifi-

cations into all available binary classifications. A k-NN model 

borrows labels for the k-nearest data by measuring the Euclidean 

distance between each learning data element. Classification is 

preceded by designating the largest number of labels as the labels 

for the step data. Perceptron produces binary outputs, such as 

SVM and LR models. Therefore, MLP sets the number of per-

ceptrons in the last layer equal to the number of labels to perform 

multiclassification tasks. Each perceptron is allocated to a label 

and learns as many binary classifications as the number of labels. 

The RF model performs ensemble learning using the bootstrap 

aggregation method on multiple decision trees. Each decision 

tree is trained by dividing the learning data and features into mul-

tiple subsets. The XGBoost model is an ensemble model that uses 

a boosting method on multiple decision trees. Unlike bootstrap 

aggregation, which teaches multiple decision trees at once, the 

boosting method trains only one decision tree at a time, weighing 

nodes of the tree that fails classification and then trains the next 

decision tree. Therefore, a single strong classifier is generated by 

the multiple decision trees of an ensemble, which performs the 

role of weak classifiers. 

3.4 Fault diagnosis 
The trained machine learning models use evaluation data to 

diagnose the normal state and 10 fault states based on each data 

state. Table 4 presents the state of the BWTS based on the labels 

and descriptions. 

Table 4: Status and description of diagnosed BWTS by label 

Label Name of state Description 
0 Normal Normal 

1 Flow Error1 
While inlet press value and 

DP value are measured, Flow 
is not measured 

2 Flow Error2 Flow meter value fluctuates 
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abnormally 

3 Fin Error1 
Inlet press value is measured 
even though there is no Flow 

value 

4 Fin Error2 
While Flow value is meas-

ured, inlet press value is not 
measured 

5 Fin Error3 Inlet press value fluctuates ab-
normally 

6 DP Error1 
DP value continues to in-

crease even after back-flush-
ing is implemented 

7 DP Error2 
While Flow and inlet press are 

measured, DP value is not 
measured 

8 DOSE Error1 DOSE value increases abnor-
mally 

9 DOSE Error2 DOSE value fluctuates abnor-
mally 

10 TEMP Error TEMP value is measured as 
abnormally high 

4. Experiment and Evaluation
4.1 Experimental setup 

The BWTS sensor data are crucial for learning and evaluating 

machine learning models. Figure 2 shows the UV unit of the 

“GloEn-Patrol” BWTS facility of Panasia Co., Ltd., which pro-

vided the sensor data used in this study. 

Figure 2: UV unit of “GloEn-Patrol” BWTS of Panasia Co., Ltd 

Out of the 47,430 sensor data elements acquired, 45,911 were 

normal data, and 1,519 were fault data. These data reflect an im-

balance, that is, a very low proportion of fault data to normal data. 

Thus, the proportions of the normal and fault data in the learning 

and evaluation data sets were set differently for each label to re-

duce the imbalance and improve the suitability of the evaluation 

results for the machine learning models. In the training step, the 

number of normal data was increased to be as similar as possible 

to the actual installation site of the BWTS. In addition, the ratio 

of the fault data was higher than that of the normal data in the 

evaluation step to determine whether the trained model per-

formed fault diagnosis correctly. The statistics of the data divi-

sion for each label are listed in Table 5. 

Table 5: Statistics of data by label 

Label Training data Evaluation 
data Total 

0 45,725 186 45,911 
1 183 74 257 
2 98 74 172 
3 88 33 121 
4 75 25 100 
5 77 69 146 
6 45 42 87 
7 120 75 195 
8 86 27 113 
9 156 75 231 
10 69 28 97 

Total 46,722 708 47,430 

We used the Python programming language for feature gener-

ation and machine-learning model learning. For feature genera-

tion for window sizes of 1–10, Numpy [18] and Pandas [19] mod-

ules were used. The Scikit-learn module was used to implement 

and test each machine learning model. All model parameters bor-

rowed default values, except for “OvO” in SVM and LR. 

4.2 Feature generation performance by window size 
The sensor data used for learning and evaluation were time-

series data observations obtained in intervals of 1 s. To evaluate 

the suitability based on the window size during feature genera-

tion, we measured the accuracy of the machine learning models 

with window sizes ranging from 1 to 10. Table 6 presents the 

classification accuracy results based on the window size for the 

six models. 

The accuracy of the SVM model tended to decrease with in-

creasing window size. This is the OvO method, which performs 

binary classification between label pairs. It appeared that an in-

crease in the number of dimensions of support vectors generated 

a hyperplane that increased the classification complexity. In con-

trast, the accuracy of the LR model tended to with an increase in 

the window size. This trend occurred owing to the OvR method 

used by the LR model in performing multiple classifications. Un-

like the OvO method, which carries out multiple classifications 
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by performing binary classification between label pairs for all 

cases, the OvR method performs multiple classifications by re-

moving the probability of the remaining labels from the total 

probability. Therefore, it appeared that the transfer of more fea-

tures improved the accuracy of the probability calculations for 

the hyperplane determination of the LR model. 

Table 6: Classification accuracy of six models based on window size 

size 
Accuracy (%) 

SVM LR k-NN MLP RF XG 
Boost 

1 90.32 78.40 94.92 97.62 99.72 96.91 
2 88.06 83.99 95.39 98.74 99.16 97.05 
3 87.20 87.62 95.92 97.89 99.72 97.05 
4 86.20 89.15 95.63 97.89 99.58 97.89 
5 84.77 89.28 95.20 98.03 99.72 97.46 
6 83.76 89.55 95.76 98.59 99.86 97.74 
7 82.46 90.10 95.76 98.02 99.30 98.02 
8 81.30 90.37 95.75 98.30 99.43 97.59 
9 80.28 90.78 95.60 97.30 99.72 97.87 
10 79.69 91.05 95.60 98.44 99.43 97.30 

The k-NN, MLP, RF, and XGBoost models showed improved 

accuracy up to specific window size, after which the accuracy 

remained similar to that for a window size of 1. Although the ef-

fects were weaker than those of the SVM and LR models, the 

classification accuracy tended to increase as the window size was 

increased to reflect the time-series data. Furthermore, the RF 

model demonstrated the highest accuracy. This result could be 

attributed to unbalanced learning progression of the bootstrap ag-

gregation ensemble method, despite the minimal amount of fault 

data.  

The conclusive differences compared to the results of previous 

studies are encouraging. Unlike previous studies that demon-

strated fault diagnosis using only the SVM model, the results of 

this study show that feature generation according to window size 

is valid for other machine learning models. By comparing win-

dow sizes ranging from 1 to 5, we confirm that a window size of 

2 is suitable for the SVM model. However, by comparing win-

dow sizes ranging from 1 to 10, we demonstrate that the feature 

generation method is unsuitable for the SVM model. 

4.3 Performance analysis of RF model 
We evaluated the performance of the RF model using a win-

dow size of six, which yielded the highest accuracy. The evalua-

tion showed improved accuracy under all conditions compared 

to those of previous studies. Table 7 lists the confusion matrix 

for the experimental results of the RF model. Table 8 presents 

the six evaluation measures [20] obtained using the values listed 

in Table 7. 

Table 7: Confusion matrix for fault diagnosis of RF model 

Target 
Total 

Normal Fault 

Predict 
Nor-
mal 185 (TP) 0 (FP) 185 

Fault 1 (FN) 522 (TN) 523 

Total 186 522 708 
TP: True Positive; FP: False Positive 

TN: True Negative; FN: False Negative 

Table 8: Evaluation metrics based on Table 7 

Measure Equation Value 

Precision, PPV 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
1.0000 

Recall, TPR 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
0.9946 

F1 score 
2𝑇𝑇𝑇𝑇𝑃𝑃 × 𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇

0.9973 

Accuracy 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹
0.9986 

False Alarm Rate 
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹
0.0000 

Specificity 
𝑇𝑇𝐹𝐹

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹
1.0000 

A true positive is a frequency at which a steady state is pre-

dicted accurately, whereas a false positive is a frequency at which 

a fault is predicted as normal. A false negative is the frequency 

of a fault being predicted, even in a normal state, whereas a true 

negative is the frequency of a fault being predicted accurately. 

The positive predictive value is called precision in the same term, 

and it refers to the ratio of correct predictions among the model 

predicted to the normal state. The true positive rate is called recall 

in the same term and refers to the ratio of correct predictions 

among actual normal state data. 

Precision is a score indicating the prediction accuracy of the 

state of a BWTS. The RF model exhibited the best performance, 

as indicated by a precision value of 100%. The recall rate, which 

is a measure of the accuracy of the predicted fault state, was 

99.46%. This value indicated that approximately 0.5% of the 

faults were undetected. The F1 score of 99.73% was the har-

monic mean of precision and recall. The false alarm rate is de-

fined as the rate at which the normal state is incorrectly predicted 
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as a fault. The false alarm rate of the RF model was 0%, indicat-

ing the case in which the normal state was classified as a fault. 

Specificity, the rate at which the fault state is predicted to have a 

fault, was determined by subtracting the false alarm rate from 1, 

recorded as 100%. In summary, the false alarm rate and specific-

ity, including precision and recall, reflected excellent perfor-

mance. We believe that this model is appropriate for application 

in the industrial sector. However, further confirmation and mon-

itoring by experts are essential, as some areas need to be further 

evaluated to implement complete unmanned systems. 

5. Conclusion
In this study, we expanded on previous studies by conducting 

feature generation based on window sizes of time-series data and 

performing fault diagnosis of BWTS sensor data using six ma-

chine learning models. By expanding on the experiments con-

ducted in previous studies, we confirmed that the classification 

performance of several types of machine learning models accord-

ing to window sizes could be improved, but we observed that this 

did not apply to the SVM model. We demonstrated that the k-

NN, MLP, RF, and XGBoost models outperformed the SVM in 

multiclassification tasks. 

The F1 score of the RF model showed the highest classifica-

tion accuracy (99.73%). These experimental results are reasona-

bly expected at industrial sites using expert monitoring and veri-

fication systems. However, further research is needed to resolve 

imbalances between normal and fault data, such as those noted in 

this paper. 
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