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Abstract: As drones become more popular, interest in drone detection as well as the use of drones is increasing. Small drones typically 

have a small radar cross section, which is difficult to detect with conventional radar sensors. To solve this problem, technology for 

detecting drones using micro-Doppler signatures has been introduced. In this study, a micro-Doppler signature was used to classify 

drone movement and detect drones. The radar signal returned from a drone was quickly calculated using the far-field approximation 

and reverse-rotating of the incident field with the method of moment. The dataset was created by generating spectrogram images for 

various incident angles and movements. Through transfer learning, we can classify the drone's four movements with an accuracy of at 

least 98%. 
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1. Introduction 
With the development of drone-related technology, drones 

have become smaller, and their prices have decreased. Conse-

quently, drones have been widely used in various fields, such as 

entertainment, broadcasting, logistics, agriculture, environmen-

tal monitoring, and disaster countermeasures. In addition, there 

are growing concerns about drone misuse, and the need for drone 

detection technology is increasing. Drones are usually as small 

as birds; therefore, conventional security systems rarely detect 

them. For vision sensors, only small pixels are filled depending 

on the size of the drone and the distance between the drone and 

sensor. For radar sensors, the magnitude of the scattered field 

generated by drones is small, owing to the small size of the drone. 

Even if the radar sensor receives the scattered signal from the 

drone, it is not easy to distinguish between a bird and drone be-

cause they have similar radar cross section (RCS) levels. There-

fore, it is difficult to detect drones using conventional radar sen-

sors that recognize a target based on the RCS. 

To use the radar sensor to detect drones, methods using radar 

signatures of a target, rather than the conventional RCS-based 

method, have been employed. In general, radar signatures of a 

complex large target, include high-resolution range profiles, in-

verse synthetic aperture radar images, and micro-Doppler signa-

tures. Among these signatures, micro-Doppler signatures have 

been commonly used for drone detection, because drones have at 

least two rotating blades that cause Doppler frequency shift. Mi-

cro-Doppler signatures, reflecting a target's unique vibration and 

rotational movement, are used to distinguish it from other flying 

objects and birds. Early studies have mostly been conducted on 

hovering drones [1]-[7]. However, the most common scenarios 

are those in which the drones are moving; even hovering drones 

make subtle movements. Therefore, it is necessary to classify the 

micro-Doppler signatures associated with various movements. 

In [1]-[2], micro-Doppler signatures extracted from multi-

static radar data were used to classify hovering drones carrying 

different payloads. B. K. Kim proposed a drone classification 

method using a convolutional neural network (CNN), which was 

trained via micro-Doppler signatures using different numbers of 

operating motors [3]. Moreover, they demonstrated that the po-

larimetric information of the micro-Doppler signature could 

† Corresponding Author (ORCID: http://orcid.org/0000-0001-9449-7772): Professor, Division of Electronics and Electrical Information Engineering 
/ Interdisciplinary Major of Maritime AI Convergence, Korea Maritime & Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan, Korea, E-mail: 
dwseo@kmou.ac.kr, Tel: +82-51-410-4427 

1 M. S. Candidate, Interdisciplinary Major of Maritime AI Convergence, Korea Maritime & Ocean University, E-mail: f3483168@g.kmou.ac.kr, 
Tel: 051-410-4427 

2 Post-Doc. Researcher, Interdisciplinary Major of Maritime AI Convergence, Korea Maritime & Ocean University, E-mail: rhadodehfdl@gmail.com, 
Tel: 051-410-4427 

https://crossmark.crossref.org/dialog/?doi=10.5916/jamet.2021.45.4.213&domain=https://e-jamet.org/&uri_scheme=http:&cm_version=v1.5


Dong-Yeob Leeㆍ Jae-In Leeㆍ Dong-Wook Seo 

Journal of Advanced Marine Engineering and Technology, Vol. 45, No. 4, 2021. 8      214 

improve the drone detection performance [4]. In [5]-[6], the au-

thors reported that the blasé length and rotation rate of drones can 

be obtained from their micro-Doppler signature. In [7], the ca-

dence frequency spectrum was used to train the K-means classi-

fier, to detect multiple drones. In these studies, the radar signals 

returned from hovering drones were measured, and micro-Dop-

pler signatures extracted from the measured radar signal were 

used for drone classification or detection. However, the drone can 

move in various directions, such as going forward and backward, 

ascending, descending, and moving right and left. Moreover, a 

radar can be located at various aspect angles from a drone. There-

fore, it is difficult to measure the dynamic RCS of a drone located 

at various aspect angles with detailed and accurate movements. 

Consequently, measurements are usually performed when the 

drone is hovering at a fixed position [1]-[2], and the signatures 

measured at the fixed position are different from those for a drone 

in flight. We added noise to match the actual measurements, and 

performed numerous simulations under various conditions. In 

addition, many signatures are required to train the classifier, but 

there is a limit to how much measurement data can be obtained. 

EM simulation of drones in various situations is the most effec-

tive solution to these problems. 

In this study, we created an RCS dataset of a drone for various 

movement scenarios, and extracted a spectrogram as micro-Dop-

pler signatures from the RCS data. Micro-Doppler signatures 

were then transmitted to a CNN, which then classified the drone's 

four representative movements (rising, descending, hovering, 

and going forward). 

2. Drone Model and Methods for Movement Es-

timation 

2.1 Drone Model 
To simulate drone movements, we referred to one of the most 

popular drones, DJI’s Mavic 2 Pro, as shown in Figure 1. The 

drone has two types of propellers, clockwise (CW) and counter-

clockwise (CCW), that are mirror-symmetric to each other. The 

centers of the propellers were located in a bilateral symmetric 

structure. In addition, the RCS patterns of a propeller made of 

carbon fiber and one made of a perfect electric conductor (PEC) 

are similar [8]. Because the micro-Doppler effects caused by the 

relative movement of the radar and drone mainly occur in the 

propeller, only the PEC propeller was modeled to estimate the 

dynamic RCS. When a drone is hovering, the net thrust of all 

propellers pushing the drone up must be equal to the gravitational 

force pulling it down. In other words, all the propellers have iden-

tical rotation rates. Ascending (or descending) drones have a 

higher (or lower) rotation rate than hovering drones. To fly for-

ward, the rear propellers must rotate faster than the front propel-

lers. 

By referring to the Robin Radar System ELVIRA, the operat-

ing frequency was determined as 9.65 GHz. The RCS and radar 

return signals were simulated at 9.65 GHz. Furthermore, the pro-

peller’s mesh was divided based on an operating frequency of 

9.65 GHz. The propeller length was 20.32 cm, or approximately 

6.54𝜆𝜆 at 9.65 GHz.  

(a)                 (b) 

Figure 1: DJI’s Mavic 2 Pro: (a) overall view and (b) propeller 

dimensions 

2.2 Dynamic RCS Data Generation 
To obtain the dynamic RCS of a moving drone, first, the elec-

tric field scattered from the drone with respect to the time step 

must be simulated. The method of moments (MoM), a numerical 

analysis technique, is commonly used to accurately estimate the 

RCS [9]. We adopted the MoM introduced in [10] to simulate the 

dynamic scattered field because it has a fast computation time. In 

[11], the results were obtained for each frame using the MoM, 

which applied a core principle similar to ours, and practically 

valid results were obtained. As shown in Figure 1 (b), the pro-

peller CAD model is segmented by triangular meshes based on 

the operating frequency, and the MoM using the Rao–Wilton–

Glisson basis function is applied to the propeller meshes to cal-

culate the electric field of a single rotating propeller. The electric 

field of a single propeller is synthesized into the electric field of 

multiple propellers using the far-field approximation, as shown 

in Figure 2. The RCS is defined as 

𝑅𝑅𝑅𝑅𝑅𝑅 = lim
𝑅𝑅→∞

4𝜋𝜋𝑅𝑅2 |𝐸𝐸𝑠𝑠|2

�𝐸𝐸𝑖𝑖�2
,      (1) 
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where R is the distance between the radar and target, and Ei 

and Es are the incident and scattered fields, respectively. Substi-

tuting the dynamic electric field into Equation (1) yields the dy-

namic RCS.  

Figure 2: Flowchart of the process followed to estimate the dy-

namic electric field of multiple propellers 

2.3 Micro-Doppler Signature Image Data Generation 
The spectrogram was obtained as a micro-Doppler signature 

from the dynamic electric field. As shown in Figure 3, first, a 

window function is applied to the dynamic electric field data, and 

the fast Fourier transform (FFT) is used to obtain a magnitude 

spectrum over time. Then, the squared spectrum becomes the 

spectrogram, which allows for the determination of the rotation 

rate and approximate magnitude of the micro-Doppler frequency 

over time.  

Figure 3: Procedure used to obtain a spectrogram from a dy-

namic electric field 

Finally, for a more realistic dataset, additive white Gaussian 

noise (AWGN) is added to the dynamic electric field according 

to various signal-to-noise ratios (SNRs). This results in micro-

Doppler signature images with various SNR values. 

2.4 Dataset and CNN Transfer Learning 
For the dataset, the elevation angle (𝜃𝜃i) was changed from 0° 

to 90° in 1° step intervals, and the azimuth angle (𝜙𝜙i) was 

changed from 0° to 180° in 5° step intervals. A total of 6,552 im-

ages were generated for each movement. To account for the noise 

effect, the AWGN was added to the radar return signal, so that 

the SNR varied from 0 dB to -15 dB with a -5 dB interval. 

CNN transfer learning was used to classify the drone move-

ment using the micro-Doppler signatures of the spectrogram in a 

supervised manner. The signature images used in this study have 

corresponding labels to identify the movement to which they are 

associated. The pre-trained CNN was AlexNet. In the training, 

stochastic gradient descent with momentum was used as the op-

timization technique. By considering the number of datasets, 

training was performed with a MiniBatch size of 64 and an epoch 

of 10. The initial learning rate was set to 0.01. 

Figure 4: Coordinate and incident angles for dataset generation 

3. Results and Discussion
3.1 Micro-Doppler Signature Images 

Figure 5 shows the spectrogram of the drone when 𝜃𝜃i = 90°, 

𝜙𝜙i = 180°, and SNR = 0 dB. The x- and y-axes are the micro-

Doppler frequency and time, respectively. The upper and lower 

points in the spectrogram are the points at which the Doppler fre-

quency shift is maximized. The maximum Doppler frequency 

can be calculated as follows: 

𝑓𝑓𝐷𝐷𝐷𝐷 = 2
𝜆𝜆

(𝜔𝜔 × 𝑟𝑟),     (2) 

where r is the radius of the propellers, 𝜔𝜔 is the rotation angular 

velocity, and 𝜆𝜆 is the wavelength of the operating frequency. Ac-

cordingly, as the rotation rate increases, the length of the propel-

ler and the operating frequency increase. Furthermore, the micro-

Doppler frequency increases. The movement of the drone 

changes according to the rotation rate of the propellers, and var-

ious micro-Doppler signatures appear according to the move-

ment. In the case of vertical movement, as the rotation rates of all 
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propellers used in one drone are all the same, components with 

identical micro-Doppler frequencies superpose and appear 

strongly in the spectrogram. The descending case had the lowest 

rotation rate, and showed the smallest micro-Doppler frequency. 

However, as the rotation rate increased from the descending to 

hovering movement and from the hovering to ascending move-

ment, the micro-Doppler frequency increased. In addition, when 

moving forward, as the front and rear propellers have different 

rotation rates, components with large and small micro-Doppler 

frequencies appear together. Figures 5 (a), 5 (b), and 5 (c) show 

that the maximum micro-Doppler frequency increases as the ro-

tation rate increase. Because the propellers of the drone that is 

moving forward have two different rotation rates, the maximum 

micro-Doppler frequency is similar to the case of ascending via 

faster rotating propellers; however, the micro-Doppler signature 

of the horizontal axis appears more complicated owing to inter-

modulation by two rotation rates. 

 (a)            (b)                      (c)                 (d) 

Figure 5: Spectrogram when the drone is (a) descending, (b) 

hovering, (c) ascending, and (d) going forward for an SNR of 0 

dB 

As the noise component increases, the spectrograms in Figure 

5 change, as shown in Figure 6. Because the dynamic RCS level 

of the propellers is low, it is difficult to determine the micro-Dop-

pler patterns even with noise of -15 dB SNR.  

Figure 6: Spectrogram when the drone is (a) descending, (b) 

hovering, (c) ascending, and (d) moving forward for an SNR of -

15 dB 

3.2 Movement Classification 
The drone movement was categorized into four types accord-

ing to the rotation rate of the propellers: ascending, hovering, de-

scending, and moving forward. A total of 65,520 images were 

randomly divided into three groups: training images, validation 

images, and images used to test for transfer learning. The classi-

fication performance is summarized in Table 1. When the eleva-

tion angle was small (0–1°), the accuracy was less than 60%. As 

the elevation angle increased, the accuracy increased signifi-

cantly. The average accuracy for all elevation angles was 

98.94%. 

Table 1: Classification accuracy performance of transfer-learned 

AlexNet 

Elevation angle [degree] Accuracy 
0º 40.27% 
1º 59.37% 
2º 87.03% 
3º 94.33% 
4º 97.33% 
5º 98.26% 

0º –90º 98.94% 

If the radar is located directly above or below the drone (𝜃𝜃i = 

0º), the distance between the radar and propellers is always main-

tained as constant in the radar direction. Consequently, a micro-

Doppler signal is barely generated. These results can be seen in 

Figure 7. 

(a)            (b)                      (c)                 (d) 

Figure 7: Spectrogram when the drone is (a) descending, (b) 

hovering, (c) ascending, and (d) moving forward for 𝜃𝜃i = 0° and 

𝜙𝜙i = 180° 

4. Conclusion
The spectrogram, one of the micro-Doppler signatures, was 

used to classify drone movement, rather than the type of drone. 

The radar return signal was calculated by considering the speed 

of the propeller according to the movement of the drone, and con-

verted into a spectrogram. We created a dataset for transfer learn-

ing by generating signatures according to various noises and an-

gles of incidence. Because we applied the test data to AlexNet 

trained via transfer learning, it was possible to distinguish move-

ments with more than 98% accuracy even in images captured af-

ter a short observation time. In the future, we expect to be able to 

classify the movements of various drones by generating data on 

more diverse types of drones and movements. 
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