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Abstract: Fluid flow and heat transfer in porous media are critical in many industrial applications; therefore, insight into problems 

associated with porous media is important for understanding their characteristics. In this study, the Lattice Boltzmann equation is 

combined with the Brinkman–Forcheimer equation, which contains a forcing term including porosity, to predict fluid flow and heat 

transfer in porous media. For a two-dimensional square porous cavity, parameters such as the Reynolds, Darcy, and Rayleigh numbers 

are considered to analyze fluid flow and heat transfer characteristics. The results show that variations in the Darcy number significantly 

affect the natural convective flow structure, heat transfer characteristics, and boundary layer thickness. Meanwhile, a high Rayleigh 

number significantly affects the fluid flow and heat transfer when the Darcy number is relatively small. 
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1. Introduction 
Fluid flow and heat transfer in porous media are important 

phenomena in many engineering systems owing to their wide ap-

plications in different fields. Porous media are composed of pol-

yphase materials in an empty area within solid particles, where 

fluid can flow. The physical properties of porous media should 

be associated with two or more parameters such that a relation-

ship can be realized to allow fluid flow through porous media [1]. 

Fluid dynamics in porous media have been applied in various in-

dustrial applications such as solid matrices, microporous heat ex-

changers, electronic cooling, chemical catalytic reactors, heat 

pipe technology, filtering, food processing, fuel cells, air heaters, 

insulation, porous bearings, solar collectors, and nuclear reactors 

[2]. Therefore, theoretical, experimental, and numerical studies 

pertaining to porous media have been conducted to obtain a better 

understanding of the underlying mechanism, and simulations of 

fluid flow fields inside porous media are necessitated [3]. 

Darcy’s equation has been broadly applied to investigate fluid 

dynamics in porous media. For low velocities, Darcy’s equation 

can be used to understand fluid dynamics. However, for high ve-

locities, the theoretical results are not consistent with experi-

mental results  [4]. Nonlinear effects and viscous stresses should 

be considered in the study of fluid flow. In cases involving high 

porosity, Brinkman’s equation is suitable for analyzing porous 

media [5]. Meanwhile, Forchheimer’s equation has not been val-

idated for  high porosity cases [6]. Using the local volume aver-

aging method, Brinkman–Forchheimer’s formula, which incor-

porates linear and nonlinear drag, was developed to solve the 

body force, although it was difficult to combine the two above-

mentioned parameters [7]. The capability of the Brinkman–

Forchheimer formula for accurately determining fluid flow char-

acteristics in non-Darcy flows has been investigated using con-

ventional numerical techniques [8]. The Lattice Boltzmann 

method (LBM), as an alternative numerical method, has garnered 

significant attention for simulating complex geometries [9]. 

The aim of the present study is to evaluate the fluid flow and 

heat transfer characteristics in a square porous cavity with a mov-

ing wall and adiabatic walls. In this study, an LBM code, includ-

ing the Brinkman–Forchheimer formula, was developed to inves-

tigate fluid flow and heat transfer in a two-dimensional square 

porous cavity. 
 

2. Numerical Methods 
2.1 Governing Equations 

To analyze fluid dynamics in isotropic and homogeneous po-

rous media, the governing equations for the generalized non-
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Darcy model under the equilibrium condition for incompressible 

flow are as follows [3]: 

𝛻𝛻.𝐮𝐮 = 0     (1) 

𝜕𝜕𝐮𝐮
𝜕𝜕𝜕𝜕

+ (𝐮𝐮.𝜵𝜵) �𝒖𝒖
𝑒𝑒
� = − 1

𝜌𝜌
𝜵𝜵(𝑒𝑒𝑒𝑒) + 𝑣𝑣𝑒𝑒�𝛁𝛁𝟐𝟐𝐮𝐮� + 𝑭𝑭      (2) 

where u is the velocity vector, p the pressure, ρ the fluid density, 

e the porosity, and ve the effective kinematic viscosity. The po-

rosity and effective kinematic viscosity are defined as follows: 

Porosity(𝑒𝑒) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝑉𝑉𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒
𝑇𝑇𝑃𝑃𝜕𝜕𝑇𝑇𝑉𝑉 𝑉𝑉𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒

        (3) 

𝜈𝜈𝑒𝑒 = 𝑐𝑐𝑠𝑠2 �𝑟𝑟𝜕𝜕 −
1
2
� ∆𝑡𝑡    (4) 

where cs, rt, and ∆t are the speed of sound, relaxation time, and 

time step, respectively. In addition, the last term F in the momen-

tum equation represents the total force due to the porous medium 

and other external forces, and it is expressed as 

𝑭𝑭 = −𝑒𝑒𝑒𝑒
𝐾𝐾
𝐮𝐮 − 𝑒𝑒𝐹𝐹𝜀𝜀

√𝐾𝐾
|𝐮𝐮|𝐮𝐮 + 𝑒𝑒𝑮𝑮,     (5) 

where v is the kinematic viscosity of the fluid. Moreover, on the 

right side of Equation (5), the first term represents the frictional 

resistance of the fluid and porous media skeleton, and the second 

term the inertia due to the presence of a porous medium. For 

flows over spherical particles, the permeability K can be defined 

as [13] 

𝐾𝐾 = 𝑒𝑒3𝑑𝑑𝑝𝑝2

150(1−𝑒𝑒)2
 (6) 

where dp is the solid particle diameter. The velocity magnitude 

|u| can be calculated as follows: 

|𝐮𝐮| = �𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2           (7) 

where ux and uy are the velocity components in the x-and y-direc-

tions, respectively. The geometric function Fɛ can be evaluated 

using Ergun’s empirical formula as follows [13]:  

𝐹𝐹𝜀𝜀 = 1.75
√150𝑒𝑒3

 (8) 

The last term in Equation (5), 𝑮𝑮, is the body force, which can 

be written as  

𝑮𝑮 = −𝑔𝑔𝑔𝑔(𝑇𝑇 − 𝑇𝑇0)                                                                  (9) 

where 𝑔𝑔 is the gravity, T0 the average temperature of the system, 

and β the thermal expansion coefficient. 

The energy equation of convective heat transfer in porous me-

dia can be expressed as 

𝜎𝜎 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝐮𝐮.𝜵𝜵𝑇𝑇 = 𝜵𝜵. (𝛼𝛼𝑒𝑒𝜵𝜵𝑇𝑇) (10) 

where T is the temperature of the fluid, and σ is the heat capacity 

ratio between the solid and fluid phases. The heat capacity ratio 

can be written as  

𝜎𝜎 = 𝑒𝑒 + (1 − 𝑒𝑒)𝜌𝜌𝑠𝑠𝑐𝑐𝑝𝑝𝑠𝑠 𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝𝑓𝑓⁄                    (11) 

where ρs, ρf and cps, cpf are the density and specific heat of the 

solid and fluid phases, respectively. In addition, the effective 

thermal diffusivity αe can be calculated as follows: 

𝛼𝛼𝑒𝑒 = 𝜎𝜎𝑐𝑐𝑠𝑠2 �𝑟𝑟𝜕𝜕 −
1
2
� ∆𝑡𝑡     (12) 

To represent the characteristics of convective heat transfer in 

porous media, we used several dimensionless numbers, i.e., the 

Reynolds number Re, Prandtl number Pr, Darcy number Da, vis-

cosity ratio J, length L, and Rayleigh number Ra. Each dimen-

sionless number is defined as follows: 

𝐷𝐷𝐷𝐷 = 𝐾𝐾/𝐿𝐿2  (13) 

𝑅𝑅𝑒𝑒 = 𝑉𝑉𝑢𝑢
𝑣𝑣

    (14) 

𝐽𝐽 = 𝑒𝑒𝑒𝑒
𝑒𝑒

    (15) 

𝑃𝑃𝑟𝑟 = 𝑒𝑒
𝛼𝛼𝑒𝑒

    (16) 

𝑅𝑅𝐷𝐷 = 𝑔𝑔𝑔𝑔∆𝑇𝑇𝐻𝐻3

𝑒𝑒𝛼𝛼𝑒𝑒
(17) 

where ∆T = Th - Tc is the temperature difference between the hot 

and cold sidewalls. 

2.2 Thermal Lattice Boltzmann Method 
The distribution functions of the LBM model used to solve the 

kinetic equations for the flow field can be written as follows: 
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𝑓𝑓𝑘𝑘(𝒙𝒙 + 𝒄𝒄𝒌𝒌∆𝑥𝑥, 𝑡𝑡 + ∆𝑡𝑡) − 𝑓𝑓𝑘𝑘(𝒙𝒙, 𝑡𝑡) 

  = − 1
𝑃𝑃𝑡𝑡
�𝑓𝑓𝑘𝑘(𝒙𝒙, 𝑡𝑡) − 𝑓𝑓𝑘𝑘

𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡)� + ∆𝑡𝑡𝐹𝐹𝑖𝑖  (18)

where fk is the particle distribution function, x the position, and 

∆x the Lattice spacing. For a D2Q9 model, the discrete velocities 

ck are calculated as follows: 

𝒄𝒄𝒌𝒌 = 0   𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘 = 0 

𝒄𝒄𝒌𝒌 = 𝑐𝑐𝑠𝑠�𝑐𝑐𝑓𝑓𝑐𝑐�(𝑘𝑘 − 1)𝜋𝜋 2⁄ � , 𝑐𝑐𝑠𝑠𝑠𝑠�(𝑘𝑘 − 1)𝜋𝜋 2⁄ ��   𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘 = 1~ 4 

𝒄𝒄𝒌𝒌 = √2𝑐𝑐𝑠𝑠�𝑐𝑐𝑓𝑓𝑐𝑐�(𝑘𝑘 − 5)𝜋𝜋 2⁄ + 𝜋𝜋 4⁄ � , 𝑐𝑐𝑠𝑠𝑠𝑠�(𝑘𝑘 − 5)𝜋𝜋 2⁄

+ 𝜋𝜋 4⁄ ��    𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘 = 5~ 8 

The weight factors are wk = 4/9 for k = 0, wk = 1/9 for k = 1–

4, and wk = 1/36 for k = 5–8. The speed of sound in this model is 

cs = c/√3. Here, c = ∆x/∆t is the Lattice speed and is set to 1 (∆x 

= ∆t) in this study. Similarly, the equilibrium distribution func-

tion can be written as 

𝑓𝑓𝑘𝑘
𝑒𝑒𝑒𝑒 = 𝑤𝑤𝑘𝑘𝜌𝜌(𝑥𝑥, 𝑡𝑡)[1 + 3𝒄𝒄𝒌𝒌.𝐮𝐮

𝑐𝑐𝑠𝑠2
+ 9

2
(𝒄𝒄𝒌𝒌.𝐮𝐮)2

𝑒𝑒𝑐𝑐𝑠𝑠4
− 3

2
𝐮𝐮2

𝑒𝑒𝑐𝑐𝑠𝑠2
]   (19) 

In a porous medium, an internal force is exerted in the domain 

owing to the presence of porosity, and it is expressed as follows: 

𝐹𝐹𝑠𝑠 = 𝑤𝑤𝑘𝑘𝜌𝜌(𝑥𝑥, 𝑡𝑡) �1 − 1
2𝑃𝑃𝑡𝑡
� �3(𝒄𝒄𝒌𝒌.𝑭𝑭)

𝑐𝑐𝑠𝑠2
+ 9

𝑒𝑒𝑐𝑐𝑠𝑠4
(𝒄𝒄𝒌𝒌.𝐮𝐮)(𝒄𝒄𝒌𝒌.𝑭𝑭) −

3 (𝐮𝐮.𝑭𝑭)2

𝑒𝑒𝑐𝑐𝑠𝑠2
�      (20) 

The particle density and actual velocity can be calculated using 

the molecular distribution function, as follows: 

𝜌𝜌 = ∑ 𝑓𝑓𝑘𝑘8
𝑘𝑘=0 ,𝐮𝐮 = 𝐕𝐕

𝑐𝑐0+�𝑐𝑐02+𝑐𝑐1|𝐕𝐕|
 (21) 

where v is the temporal velocity; c0 and c1 are constants calcu-

lated as shown below. 

𝑽𝑽 = ∑ 𝒄𝒄𝑘𝑘𝑓𝑓𝑘𝑘 𝜌𝜌⁄8
𝑘𝑘=0 + ∆𝜕𝜕

2
𝑒𝑒𝑮𝑮   (22) 

𝑐𝑐0 = 1
2
�1 + 𝑒𝑒∆𝜕𝜕𝑒𝑒

2𝐾𝐾
�            (23) 

𝑐𝑐1 = 𝑒𝑒∆𝜕𝜕𝐹𝐹𝜀𝜀
2√𝐾𝐾

   (24) 

Equation (10) can be solved using an auxiliary Lattice Boltz-

mann equation, as follows: 

𝑔𝑔𝑘𝑘(𝒙𝒙 + 𝒄𝒄𝒌𝒌∆𝑥𝑥, 𝑡𝑡 + ∆𝑡𝑡) − 𝑔𝑔𝑘𝑘(𝒙𝒙, 𝑡𝑡) = − 1
𝑃𝑃𝑡𝑡
�𝑔𝑔𝑘𝑘(𝒙𝒙, 𝑡𝑡) −

𝑔𝑔𝑘𝑘
𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡)�          (25)

where 𝑔𝑔𝑘𝑘 is the temperature distribution function, rt the relax-

ation time, and 𝑔𝑔𝑘𝑘
𝑒𝑒𝑒𝑒  the equilibrium distribution function, which

is defined as  

𝑔𝑔𝑘𝑘
𝑒𝑒𝑒𝑒 = 𝑤𝑤𝑘𝑘𝑇𝑇 �𝜎𝜎 + 𝒄𝒄𝒌𝒌.𝐮𝐮

𝑐𝑐𝑠𝑠2
�  (26) 

Hence, the governing equations, i.e., Equations (1), (2), and 

(10), can be solved using these Lattice Boltzmann formulas to 

analyze the fluid flow and heat transport in porous media. 

2.3 Boundary conditions 

2.3.1 Flow field 

In all wall boundaries, the bounce back boundary condition for 

a D2Q9 model is adopted, as illustrated in Figure 1. 

 𝑓𝑓2 = 𝑓𝑓4, 𝑓𝑓5 = 𝑓𝑓7, 𝑓𝑓6 = 𝑓𝑓8  (27) 

Figure 1: Illustration of boundary conditions for fluid flow. Con-

tinuous and dashed lines represent known and unknown distribu-

tion functions, at wall, respectively. 

2.3.2 Temperature field 

The bounce-back boundary condition (adiabatic) was used on 

the top and bottom of the boundaries. Therefore, the following 

conditions are imposed, as illustrated in Figure 2. 

𝑔𝑔2 = 𝑔𝑔4,𝑔𝑔6 = 𝑔𝑔8,𝑔𝑔5 = 𝑔𝑔7        (28) 
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Figure 2: Illustration of boundary conditions for heat transfer. 

Continuous and dashed lines represent known and unknown dis-

tribution functions at wall, respectively. 

The temperature distributions at the cold wall are calculated as 

follows: 

𝑔𝑔1 = 𝑇𝑇ℎ�𝑤𝑤(1) + 𝑤𝑤(3)� − 𝑔𝑔3           (29) 

𝑔𝑔5 = 𝑇𝑇ℎ�𝑤𝑤(5) + 𝑤𝑤(7)� − 𝑔𝑔7      (30) 

𝑔𝑔8 = 𝑇𝑇ℎ�𝑤𝑤(8) + 𝑤𝑤(6)� − 𝑔𝑔6  (31) 

The temperature distributions at the hot wall are calculated as 

follows: 

𝑔𝑔3 = −𝑔𝑔1,𝑛𝑛−1  (32) 

𝑔𝑔6 = −𝑔𝑔8,𝑛𝑛−1   (33) 

𝑔𝑔7 = −𝑔𝑔5,𝑛𝑛−1  (34) 

3. Description of problems

3.1 Porous cavity with moving wall 
In this study, a square cavity with fully porous media was con-

sidered to analyze the fluid flow characteristics; the top wall was 

modeled as moving, whereas the other walls were fixed, as 

shown in Figure 3. In the figure, H and L represent the height 

and length of the square porous cavity (H/L=1), respectively. The 

fluid in the domain exhibited a Newtonian, incompressible, and 

laminar flow. The parameters considered to analyze the fluid 

flow behavior in the square porous cavity are summarized in Ta-

ble 1. The moving wall velocity was selected arbitrarily, and the 

viscosity was calculated using the relaxation time, which is 

associated with the Re. The lattice unit and time step were de-

fined based on the LBM principles. The density of the fluid was 

considered to be unity. A domain measuring 100 × 100 lattice 

units was used for the fluid flow analysis. The simulation time 

was set to 100,000 time steps to reach a steady state. 

Figure 3: Computational domain for fluid flow analysis and 

boundary conditions 

Table 1: Parameters considered for investigating fluid flow 

Porosity 

(e) 

Reynolds number 

(Re) 

Darcy number 

(Da) 

0.99 

100 

104 400 

1000 

0.1 10 

10-2

10-3

10-4

3.2 Porous cavity with adiabatic walls 
The fluid domain was considered as a cold wall on the left side 

and a heated wall on the right side to analyze the convective heat 

transfer characteristics, as shown in Figure 4. In addition, the two 

horizontal walls were adiabatic. A numerical study was per-

formed for this fluid domain for different Ra and Da, and a con-

stant porosity. The finite difference method [8] was used as a ref-

erence to verify the average Nusselt number in the present study. 

A domain measuring 128 × 128 lattice units was used in this study. 

The characteristic speed in convective heat transfer is propor-

tional to �gβ∆TH, and it should be less than approximately 0.1 

for a good approximation. Therefore, the relaxation time rt em-

ployed was consistent with the various Ra, Da, and porosity for 
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the lattice Boltzmann equations. The calculation time was set to 

150,000 time steps. Three different cases were considered to in-

vestigate heat transfer porous media, as listed in Table 2. 

Figure 4: Computational domain for convective heat transfer 

analysis and boundary conditions used 

Table 2: Cases considered for investigating convective heat 

transfer 

Cases Porosity
(e) 

Darcy 
No. 
(Da) 

Prandtl 
No. 
(Pr) 

Rayleigh 
No. 
(Ra) 

Case 
1 0.4 10-2 1.0 

103 
104 
105 

Case 
2 0.4 10-4 1.0 

105 
106 
107 

Case 
3 0.4 

10-3

1.0 107 10-4

10-5

4. Results and Discussions

4.1 Fluid flow analysis in porous cavity 

4.1.1 Effects of Re 

The simulation was performed based on a fully porous cavity, 

where the porosity (e = 0.99) and Da (Da = 104) were set to con-

stant values for different Re (Re = 100, 400, and 1000) to achieve 

an ideal porous cavity flow. The velocity streamlines for different 

Re are shown in Figure 5. The fluid velocity in the porous media 

increased with Re. Therefore, the fluid can flow easily through 

the porous media. When Re was low, a small vortex was formed 

near the moving wall, as shown in Figure 5 (a). As Re increased, 

the fluid vortex shifted toward the center of the cavity. A 

secondary vortex was generated at the bottom corners of the cav-

ity owing to the rapid motion of the fluid. The results of the ve-

locity profiles for Re = 100, 400, and 1000 were plotted along the 

centerline of the cavity, as presented in Figure 6. The velocity 

profiles obtained in the present study agreed well with those of 

Ghia et al. [10]. 

Figure 5: Streamlines for (a) Re = 100, (b) Re = 400, and (c) Re 

= 1000 
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Figure 6: (a) Horizontal, and (b) vertical velocity profiles [10] 

4.1.2 Effects of Da 

The effects of Da was investigated for a low Re (Re = 10) and 

porosity (e = 0.1). To visualize the fluid flow behaviors, the ve-

locity streamlines for different Da are presented, as shown in Fig-

ure 7. As shown in Equation (13), Da is directly proportional to 

the permeability. Therefore, it can be inferred that when Da is 

low, the permeability of the porous media will be low. Figure 7 

(a) shows that when Da is low, vortex flow occurred near the 

moving wall; this is because a low Da restricts fluid flow owing 

to the lower permeability. By contrast, a high Da increases the 

permeability, resulting in an increase in the fluid velocity 

throughout the cavity; consequently, the vortex becomes stronger 

and tends to move to the center of the cavity.  

Figure 8 shows the velocity profiles for various Da at the mid-

height of the cavity. As shown, the LBM results agreed well with 

the FDM results. It was observed that, for a low Da, the velocity 

boundary layer thickness near the moving wall became linear 

owing to the slow motion of the fluid. As Da increased, the ve-

locity boundary layer thickness increased, and the vortex flow 

shifted toward the center from the moving wall, which indicates 

that the fluid can flow easily through porous media with increas-

ing permeability or Da.  

Figure 7: Streamlines for (a) Da = 10-4, (b) Da = 10-3, and (c) Da 

= 10-2 
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Figure 8: (a) Horizontal and (b) vertical velocity profiles [14]. 

4.2 Convective heat transfer analysis for porous cavity 

4.2.1 Effects of Ra for intermediate Da 

Streamlines and isotherms for different Ra were obtained for 

Case 1 described in Table 2, as shown in Figures 9 and 10. Fig-

ure 9 shows that the shape of the fluid circulation was almost 

symmetric for the lower Ra = 103 owing to the low bouncy force, 

although fluid flow motion commenced. As Ra increased, the 

fluid circulation throughout the cavity increased because of the 

high bouncy force. Therefore, the fluid flow and isotherm pat-

terns changed gradually with increasing Ra; consequently, the 

fluid flow patterns became elliptical, the isotherm changed from 

nearly vertical to an s-shape, and the velocity and thermal bound-

ary layer thicknesses near the two vertical walls became thinner.  

Generally, in cases involving an increase in Ra, the buoyant 

force causes an increase in the shear stresses near the wall, which 

Figure 9: Streamlines in cavity for e = 0.4 and Da = 10-2 (Case 

1): (a) Ra = 103, (b) Ra = 104, and (c) Ra = 105 

consequently results in more turbulence inside the cavity and 

hence heat transfer improvement. Figures 11 shows that heat 

transfer occurred primarily by conduction between the high (right) 

and low (left) temperature walls for low Ra, owing to the few 

velocities and the linear temperature profile. As Ra increased, the 

heat transfer mechanism in the cavity changed from conduction 

to convection because the buoyancy force increased the velocity 

magnitude. 
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Figure 10: Isotherms in cavity for e = 0.4 and Da = 10-2 (Case 

1): (a) Ra = 103, (b) Ra = 104, and (c) Ra = 105 

Figure 11: Velocity and temperature profiles in cavity: (a) Hori-

zontal velocity profile, (b) vertical velocity profile, and (c) tem-

perature profile (Case 1). 

4.2.2 Effects of Ra for low Da 

Figures 12 to 14 show the streamline, isotherm, velocity, and 

temperature profiles for Case 2, respectively. The Da of Case 2 

was 100 times lower than that of Case 1. Based on definition,  Da 

is related to the permeability of the fluid flow; therefore, the per-

meability in porous media of decreases with Da. As such, the re-

sistance of the fluid flow in Case 2 would be higher than that of 

Case 1. Consequently, the pattern shown in Figure 13 (a) is sim-

ilar to that in Figure 12 (a); however, the Ra of Case 1 was 100 

times lower than that of Case 2. This implies that a high Ra must 

overcome the relatively high flow resistance of low Da flows.  

Figure 12 shows that the overall flow patterns of Case 2 were 

different, and that the centers of the vortex were located relatively 

near the left wall compared with Case 1. Figures 13 and 14 show 
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Figure 12: Streamlines in cavity for e = 0.4 and Da = 10-4 (Case 

2): (a) Ra = 105, (b) Ra = 106, and (c) Ra = 107 

that the isotherm and velocity and temperature distribution were 

relatively similar to those of Case 1 (as shown in Figures 10 and 

11). 

Figure 13: Isotherms in cavity for e = 0.4 and Da = 10-4 (Case 

2): (a) Ra = 105, (b) Ra = 106, and (c) Ra = 107 
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Figure 14: Velocity and temperature profiles in cavity: (a) Hor-

izontal velocity profile, (b) vertical velocity profile, and (c) tem-

perature profile (Case 2) 

The average Nusselt numbers of the left (or right) walls of 

Cases 1 and 2 were obtained to compare the LBM with the con-

ventional FDM [8], as shown in Table 3. The average Nusselt 

number of the left (or right) square porous cavity was calculated 

as follows: 

𝑁𝑁𝑢𝑢𝑇𝑇𝑣𝑣 = 1
𝐻𝐻 ∫ �𝜕𝜕𝑇𝑇

𝜕𝜕𝑥𝑥
� 𝑑𝑑𝑑𝑑 𝐻𝐻

0    (36) 

Table 3: Average Nusselt numbers for Pr = 1.0 

Da Ra Porosity (e = 0.4) 
LBM Ref. [8] 

10-4 

(Case 2) 

105 1.061 1.067 
106 2.60 2.55 
107 7.785 7.81 

10-2 

(Case 1) 

103 1.004 1.01 
104 1.362 1.408 
105 2.985 2.983 

As shown in Table 3, the results of the LBM agreed well with 

those of the conventional FDM. 

Figure 15: Streamlines in cavity for e = 0.4 and Ra = 107 (Case 

3): (a) Da = 10-3, (b) Da = 10-4, and (c) Da = 10-5 

4.2.3 Effects of Da for fixed Ra 

Figures 15 to 17 show the streamlines, isotherms, velocities, 

and temperature distributions for Case 3, respectively. As Da 
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increased, the thermal boundary layers near the vertical walls be-

came thinner due to less flow resistance, and more convective 

mixing occurred in the interior of the cavity. 

Figure 16: Isotherms in cavity for e = 0.4 and Ra = 107 (Case 3): 

(a) Da = 10-3, (b) Da = 10-4, and (c) Da = 10-5 

Figures 17 (a) and (b) show that the velocity indicated a peak 

near the hot and cold walls, and the peak of the velocity profile 

increased and became sharper as Da increased. The temperature 

distribution along the horizontal midline is shown in Figure 17 

(c). The temperature distribution at Da = 10-3 was almost similar 

to that at Da = 10-4. As Da decreased, the temperature profile near 

the wall changed slowly owing to the decreased convection effect 

caused by the lower fluid velocity. The phenomena observed 

from the velocity and temperature profiles show that the flow 

pattern and convective heat transferred in the case with Da = 10-

5 were similar to Case 1 with Da = 10-2 and Ra = 104. This implies 

that Da significantly affects the fluid flow behavior. 

Figure 17: Velocity and temperature profiles in cavity: (a) Hori-

zontal velocity, (b) vertical velocity, and (c) temperature profiles 

(Case 3) 
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5. Conclusion
In this study, the LBM code combined with the Brinkman–

Forchheimer formula was developed to investigate fluid flow and 

heat transfer characteristics in porous media. For a two-dimen-

sional square porous cavity, parameters such as Re, Da, and Ra 

were considered to analyze fluid flow and heat transfer charac-

teristics. It was discovered that the results obtained using the 

LBM were consistent with those obtained using the FDM; hence, 

the LBM is a good approach in porous media research.  

The simulation results obtained in this study were as follows: 

1) When Re was low, vortex formation was observed near the

moving wall, as shown in Figure 5 (a). As Re increased,

the fluid vortex shifted toward the center of the cavity, and

a secondary vortex appeared in the bottom corners of the

cavity owing to the rapid motion of the fluid.

2) As Da increased, the velocity boundary layer thickness in-

creased, and the vortex flow shifted toward the center from

the moving wall; this indicates that the fluid flowed easily

through the porous media with increasing permeability or

Da.

3) As Ra increased, the heat transfer mechanism in the cavity

changed from conduction to convection because the buoy-

ancy force increased the velocity magnitude.

4) As Da increased for a fixed Ra, the thermal boundary layers 

near the vertical walls became thinner because of the lower

flow resistance and more convective mixing in the interior

of the cavity.

In summary, the simulation results showed that variations in 

Da significantly affected the natural convective flow structure, 

heat transfer characteristics, and boundary layer thickness. 

Meanwhile, a high Ra affected the fluid flow and heat transfer 

significantly when Da was relatively low. 
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