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Abstract: Face recognition (FR) technology, which combines computer vision and artificial intelligence, has recently attracted signif-

icant attention as a means of identification. Among biometric technologies, FR technology is used in various fields because it does not 

require physical contact and is hygienic and convenient. Generally, FR processes use imaging equipment to extract facial feature data 

representing human faces. One can recognize faces by matching the extracted data to facial feature data stored in a database. In this 

study, we compared the performances of existing deep-learning-based face detection algorithms (i.e., dlib and the single-shot multi-

box detector Mobilnet V2) and FR algorithms (i.e., visual geometry groups and ResNet), and developed new FR algorithms, which are 

crucial for worker access control systems in hazardous regions. To analyze field applicability, we attempted to implement FR algo-

rithms with high prediction accuracy in various scenarios (e.g., subjects wearing helmets, protective glasses, or both). We applied 

regularization to improve the performance of the implemented algorithms. Additionally, related data were collected and analyzed to 

recognize the number of people wearing masks. The results of recognizing the number of people wearing masks were obtained. These 

results will support future research on safety issues in the manufacturing industry and the use of face and image recognition techniques. 
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1. Introduction
Computer vision is a technology that extracts meaningful infor-

mation by recognizing photographs (still images) or videos using 

computers. Recently, computer vision combined with deep learn-

ing has been applied in various industries, such as autonomous 

driving and/or navigation, industrial robots, and face recognition 

(FR). In particular, computer vision (i.e., image recognition) tech-

nology incorporating big data in the manufacturing industry has 

become a core component of the Fourth Industrial Revolution. This 

technology is used to reduce defect rates through defect detection 

and its application is expanding. 

Computer vision technology that interprets characters, biometric 

information (e.g., faces or fingerprints), license plates, etc. has been 

widely applied in smart cities, smart factories, and traffic safety man-

agement systems, where safety and control are critical. In particular, 

FR is a biometric technology used for identity authentication in mil-

itary, financial, and public security areas. FR identifies people using 

input images and the process is divided into face detection, face land-

mark detection, face feature extraction, and FR (Figures 1 and 2). 

Figure 1: Software flow for FR 

Figure 2: Changes in recognition technology 
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In the past, research on FR was conducted by using hand-

crafted features such as HOG [1], local binary patterns [2], and 

Gabor [3] to extract useful features from images. However, based 

on recent advancements in deep learning, many face detection 

algorithms (e.g., AlexNet [4], ImageNet [5], You Only Look 

Once (YOLO) [6], Faster R-CNN [7], and RefineNet [8]), based 

on deep learning algorithms such as convolutional neural net-

works (CNNs) and FR algorithms have been developed. In this 

study, we aimed to develop an FR algorithm to support the de-

velopment of smart access systems and access control manage-

ment systems for hazardous areas. To this end, we compared the 

performances of conventional deep-learning-based face detec-

tion algorithms (i.e., dlib [9] and single-shot multibox detector 

(SSD) [10]) and FR algorithms (i.e., visual geometry group 

(VGG) [11] and ResNet [12]). Additionally, we aimed to imple-

ment an FR algorithm that achieves high prediction accuracy in 

various scenarios (e.g., target wearing a helmet, protective 

glasses, or both). 

In Section 2, we describe the deep-learning-based FR structure 

and an FR algorithm based on DeepFace. We also review litera-

ture related to this study and describe techniques for improving 

algorithm performance. In Section 3, we propose a deep-learn-

ing-based FR algorithm that is suitable for industrial sites and 

examine the effects of normalization on facial recognition. In 

Section 4, we conclude this paper with suggestions for future re-

search. 

2. FR Algorithm
2.1 Deep-learning-based FR structure 

In this section, we briefly describe associated algorithms be-

fore discussing the algorithms considered in this study. We also 

describe representative algorithm performance improvement 

techniques. 

2.1.1. VGGFace 

One structure that emerged following the emergence of Deep-

Face is the VGGFace [15] (or DeepFR) deep network structure 

proposed by the VGG at Oxford University. VGGFace utilizes 

the VGG face dataset (a large dataset for FR created through In-

ternet searches) and trains a deep network structure consisting of 

15 convolutional layers (Figure 3). The VGG not only provided 

a VGGFace training model, but also trained it using a relatively 

simple 3 × 3 convolution filter, similar to the VGG structure used 

in ImageNet image recognition challenges. As a result, VGGFace 

achieved 98.95% accuracy on the LFW dataset, which is approx-

imately 1% better than DeepFace. Additionally, various deep net-

work structures have been proposed for FR, including DeepID 

[16], DeepID2 [17], DeepID2+ [18], and DeepID3 [19], to im-

prove performance. 

2.2 Theories related to DeepFace-based FR 

2.2.1 Object detection algorithms 

Here, we discuss an object detection algorithm based on a 

CNN. There are various algorithms ranging from regions with 

CNNs (R-CNN) [20], which applies a CNN to object detection, 

to SSD, which has recently exhibited high detection speed. We 

will briefly describe the CNN-based SSD algorithm and Dlib li-

brary used for object detection. 

2.2.1.1 Dlib library 

Dlib is a modern C++ toolkit that contains machine learning 

algorithms and tools for developing complex software in C++ to 

solve real-world problems [9]. 

Figure 4: Visualizing 68 facial landmark coordinates from the 
iBUG 300-W dataset 

Figure 3: VGGFace deep network architecture 



Deep-learning-based face recognition for worker access control management in hazardous areas 

Journal of Advanced Marine Engineering and Technology, Vol. 45, No. 3, 2021. 6     124 

 A pre-trained face landmark detector in the dlib library [9] was 

used to estimate the position of 68 (x, y) coordinates that map to 

the structure of a face. Figure 4 presents the indexes of the 68 

coordinates. 

This annotation is part of the 68 point iBUG 300-W dataset on 

which the dlib face landmark predictor was trained. There are ad-

ditional types of facial landmark detectors, including a 194 point 

detector, which can be trained on the HELEN dataset [21]. 

Regardless of the dataset used, one can train a shape predictor 

for input training data by using the dlib framework. This can be 

useful when one whishes to train a face landmark detector or cus-

tom shape predictor. 

2.2.1.2 SSD 

 SSD [10] recognizes objects using feature maps of various 

sizes without separately training a region proposal network 

(RPN) to generate candidate regions (Figure 5). The feature 

maps obtained from a CNN model [22] are reduced in size as the 

convolutional layers progress, as shown in Figure 5. The SSD 

recognizes objects by using all feature maps extracted during this 

process for the inference process. Large feature maps extracted 

at shallow depths can detect small objects, whereas small feature 

maps extracted at deeper depths can detect large objects. SSD 

improves training speed (compared to the faster region-based 

CNN (Faster R-CNN)) [7] by eliminating the RPN and it can rec-

ognize objects more accurately than the YOLO model [6] by us-

ing feature maps of various sizes. Experiments on the PASCAL 

VOC 2007 dataset revealed that SSD achieved a mean average 

precision (mAP) approximately 3% higher than that of the Faster 

R-CNN and achieved a faster detection speed than YOLO by pro-

cessing 22 images per second. 

2.2.2 Object detection 

CNN models for object recognition have evolved into deeper 

structures since the AlexNet model [4] first implemented a deep 

CNN structure. In this section, we briefly describe the VGG [11] 

and ResNet [12] models applied to FR in this study. 

2.2.2.1 VGG 

The VGG [11] was proposed based on research on perfor-

mance changes observed as a function of CNN layer depth. It 

uses the same setup for each model by performing integration 

five times and setting all filter sizes to three to equalize all con-

ditions, except for the layer depth in the model structure. We con-

ducted experiments using five models with depths ranging from 

11 to 19. It was determined that the VGG model could serve as a 

larger filter if it was used repeatedly after setting the filter size to 

three. Many recent models have used this filter size. Although 

this model came in second at the ILSVRC-2014 competition, it 

is still attracting significant attention based on its excellent per-

formance and simple structure, which is presented in Figure 5. 

2.2.2.2 ResNet 

CNNs for image object recognition have been improved by 

implementing deeper network structures. However, increasing 

the number of layers to hundreds or thousands leads to 

Figure 6: VGG network structure 

Figure 5: SSD object detection network architecture [10] 
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inaccuracy. ResNet [12] applied a method called residual learn-

ing [12] to solve this problem. In residual learning (Figure 7), a 

specific layer learns not only an output, but is also trained to re-

spond sensitively to small changes by learning the differences 

between the inputs and outputs. Learning the differences between 

inputs and outputs is accomplished through addition only, which 

maintains computational efficiency because no additional param-

eters are required. ResNet is a model that applies the concept of 

residual learning to a 34-layer VGG model. Through our experi-

ments, we confirmed that the accuracy decreased for the same 

VGG model when residual learning was not applied and the num-

ber of layers was increased from 18 to 34. The accuracy increased 

with am increase in the layer count of the VGG model (i.e., Res-

Net model) to which residual learning was applied. 

Figure 7: Residual Block 

2.3 Performance comparisons of object recognition models 
In Sections 2.2.1 and 2.2.2, we discussed object detection and 

object recognition algorithms based on CNN models. Each 

model and method have advantages and disadvantages in terms 

of accuracy and detection speed. Huang et al. compared these 

methods through experiments under the same conditions. We 

confirmed the experimental results based on training time and 

accuracy. We conducted experiments on typical object recogni-

tion methods, such as the Faster R-CNN, R-FCN, and SSD. The 

R-FCN and SSD required relatively little training time, but had 

low accuracy, whereas the Faster R-CNN required more training 

time, but had higher accuracy. The object recognition perfor-

mance if different CNN models can be confirmed based the data 

provided by Huang et al. ResNet-101 and Inception ResNet V2 

achieved the highest accuracy and SSD exhibited little variation 

in accuracy according to the CNN model. 

2.4 Public datasets for verifying FR technology 
Various large datasets have been used to verify deep-learning-

based FR learning and performance. Among them, only Celeb-

Faces, DeepFace (Facebook), and FaceNet (Google) are suitable 

for deep network training with large datasets, but their applica-

tion is generally limited because they are non-public datasets. In 

contrast, the VGGFace dataset is a public dataset and its two ver-

sions (i.e., VGGFace and VGGFace2) are available for deep net-

work training. Various challenges have been held to verify the 

performance of FR technologies using a large training dataset. 

Additionally, wild validation datasets including various changes 

have been released. Among them, the most widely used datasets 

are LFW, YouTube Face [23], IJB [24]-[26], and MegaFace 

[27][28]. In this section, we describe the LFW dataset used for 

algorithm verification. 

2.5 Transfer learning 
We implemented FR using deep learning algorithms by apply-

ing transfer learning, which utilizes pre-trained models. Transfer 

learning utilizes pre-trained models to solve unknown problems. 

It is utilized to solve problems that are similar to a pre-trained 

model when pre-trained models with good performance are avail-

able. Extensive resources are required to construct the large da-

tasets that are required for training new models, as described in 

Section 2.3. Therefore, if pre-trained models with good learning 

performance are adopted, physical resources and the associated 

training time and cost can be saved.  

Fine-tuning is a process that is required to perform transfer 

learning. Fine-tuning is performed based on the similarity be-

tween a pre-trained model and new dataset used for training, and 

it can be classified into three main approaches. 

Figure 8 presents summaries to provide an understanding of 

these approaches. The first approach is employed when the size 

of the training dataset is extremely large, but there is little simi-

larity between the training dataset and pre-trained model. The 

second approach involves training only a few layers of the model. 

This approach is employed when the size of the training dataset 

is extremely large and its similarity with the pre-trained model is 

high, and when the size of the training dataset is small and its 

similarity with the pre-trained model is low. The training process 

can be performed under any conditions in the former case. How-

ever, in the latter case, overfitting may occur based on the small 

size of the dataset if training is performed on several layers. Sim-

ilarly, training may not be effective if only a few layers are 

trained. Therefore, the size of the dataset must be enhanced 

through data augmentation and one must train an appropriate 

number of layers. Finally, the third approach involves training 

only the final layer of the model, which is called the classifier 

layer. This approach is employed when the size of the training da-

taset is small, but its similarity with the pre-trained model is high. 
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Figure 8: Diagrams of three approaches to transfer learning 

3. Deep-learning-based

FR Algorithm (DeepFace) 
In this study, we analyzed the performance of two face detec-

tion algorithms (dlib and SSD-MobilenetV2) and two FR algo-

rithms (VGG and ResNet). We generated four models (dlib-

VGG, dlib-ResNet, SSD-VGG, and SSD-ResNet), which were 

trained on the “Face Detection Dataset and Benchmark” (FDDB) 

dataset [29] for face extraction. We compared the performances 

of the face extraction algorithms on 1,000 images from the LFW 

dataset [14] (Section 3.2). By utilizing the algorithm with the best 

recognition rate, we attempted to perform FR in various scenar-

ios (i.e., when subjects were wearing a helmet or protective 

glasses) to confirm its applicability to worker access control 

management systems in hazardous areas (Section 3.3). 

Figure 9 presents the research method adopted in this study. 

Figure 9: Research method 

3.1 Results on benchmark datasets 
3.1.1 Training datasets 

The FDDB of face regions was designed to study the problem 

of unconstrained face detection. This dataset contains annota-

tions for 5,171 faces in a set of 2,845 images taken from the faces 

in the wild dataset [29]. 

3.1.2 Testing datasets 

To analyze the recognition rates of the FR algorithms, we used 

public LFW data. The LFW dataset, which was released in 2009, 

contains 13,233 images of 5,749 celebrities from the internet. 

Compared to other FR datasets (e.g., FERET and MultiPIE) ob-

tained by shooting in restricted environments, this dataset has 

been more widely used to verify the performance of FR technol-

ogies because it includes changes in lighting, facial expressions, 

and poses that appear in everyday life. Because the LFW dataset 

contains 2.31 images per person on average and there are no sep-

arate galleries or verification images, it is mainly used to verify 

the performance of face verification technologies, rather than 

face identification technologies. The accuracy achieved on the 

LFW dataset in recent FR research is approximately 99.73% 

[14], which is known to be saturated by high-quality images (Ta-

ble 1). 

Table 1: FR performances of various FR methods (%) 

Dataset Face Recognition 
Algorithms Face Verification 

LFW 

DeepFace 97.4 
VGGFace 98.9 

SphereFace 99.4 
FaceNet 99.6 
CosFace 99.7 

3.2 Performance comparisons of FR algorithms 
Recall and precision must be considered simultaneously to 

evaluate the performance of face extraction algorithms. Recall 

indicates how well the object to be extracted is detected without 

being left out and precision indicates the accuracy of the detected 

results, meaning the number of actual target objects included in 

the detection results. We can define the precision and recall of the 

recognition algorithms as follows. 

Precision refers to the ratio of correct detections among all de-

tection results. Precision can be expressed by the following equa-

tion: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑇𝑇

𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .   (1) 

Here, TP means true positive and refers to “correct detections,” 

whereas FP means false positive and refers to “incorrect detec-

tions.” In other words, precision characterizes the ratio of cor-

rectly detected objects among all of the objects detected by an 

algorithm. 
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Recall is the ratio of correctly detected objects among all ob-

jects that should be detected. Recall can be expressed by the fol-

lowing equation: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

= 𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠

   (2) 

Figure 10: Results of the dlib-VGG model 

Figure 11: Results of the dlib-ResNet model 

In general, regarding the performance of object recognition al-

gorithms, it is not appropriate to express the overall performance 

of an algorithm as a single value because recall and precision are 

values that change dynamically depending on the parameter ad-

justment of the algorithm. Therefore, we use a precision-recall 

graph to analyze performance changes in terms of precision and 

recall to evaluate the performance of an object recognition 

algorithm. However, although a precision-recall graph has the 

advantage of representing the overall performance of an algo-

rithm, it is inconvenient to compare the performances of two dif-

ferent algorithms quantitatively. 

Figure 12: Results of the SSD-VGG model 

Figure 13: Results of the SSD-ResNet model 

Therefore, we use the receiver operating characteristic (ROC) 

curve as a criterion for evaluating the performance of FR algo-

rithms. The ROC curve is calculated as the area under the graph 

line in the precision-recall graph. A higher value of the area under 

the ROC curve indicates that an algorithm performs better. Fig-

ures 10 to 13 present the results of training under the same con-

ditions for the quantitative performance comparison of FR algo-

rithms. The closer a value is to one, the better the performance. 
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One can see results of 0.9394 for Dlib-VGG, 0.9717 for Dlib-

ResNet, 0.9500 for SSD-VG, and 0.9900 for SSD-ResNet. We 

compare the results in Figure 14 in one plot. SSD-ResNet per-

forms the best with a value of 0.9900. 

Figure 14: ROC curve (AP) 

3.3 Application of DeepFace-based FR algorithms 
We evaluated the accuracy of FR by selecting the SSD-ResNet 

model as an FR algorithm and then applying it to actual data (e.g., 

one-person recognition, multiple-people recognition). Here, by 

considering the working environment, we analyzed the 

applicability of the selected in the field by analyzing its accuracy 

based on data captured in various scenarios (e.g., wearing a hel-

met, protective glasses, or both). 

3.3.1 Analysis of the FR rate of DeepFace (SSD-ResNet model) 

We captured three photographs of each individual as data for 

training the SSD-ResNet model (Figure 13). The best-performing 

SSD-ResNet algorithm was selected to perform FR. To verify the 

face extraction and FR rates of the SSD-ResNet model, we com-

pared the FR rates in cases with only one person and cases with 

multiple people in a photograph (testing data, Tables 3 and 4). 

The analysis of these results confirmed good performance for 

face extraction and FR with one person or multiple people (Ta-

bles 3 and 4). In each result (Tables 3 and 4), the left side of the 

rectangular box presents the accuracy of face extraction and the 

right side shows the FR rate. Here, the cosine similarity displayed 

on the right side of the rectangular box indicates the similarity of 

two vectors and can be obtained by calculating the cosine angle 

between the two vectors. If two vectors are exactly the same, then 

the value is one. If the angle between the two vectors is 90°, then 

the value is zero. If the vectors are opposite (angle of 180°), then 

the value is −1. In other words, the cosine similarity has a value 

between −1 and 1. As it approaches one, the similarity increases.

Table 2: Training data 

Name Pictures 

Bae J. S. 

Jang J.K. 
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Table 3: Testing data (Individuals) 

Kim K.K. 

Noh C.M. 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Bae J. S. 

0.832 

Wearing Helmet 

Bae J. S. 

0.724 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Wearing 
Protect Glasses 

Wearing Helmet + 
Protect Glasses 

Bae J. S. 

0.941 

Bae J. S. 

0.870 
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Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Jang J. K. 

0.884 

Wearing Helmet 

Jang J. K. 

0.840 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Wearing 
Protect Glasses 

Wearing Helmet + 
Protect Glasses 

Jang J. K. 

0.794 

Jang J. K. 

0.811 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Kim K. K. 

0.841 

Wearing Helmet 

Kim K. K. 

0.863 
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Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Wearing 
Protect Glasses 

Wearing Helmet + 
Protect Glasses 

Kim K. K. 

0.781 

Kim K. K. 

0.816 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Noh C. M. 

0.770 

Wearing Helmet 

Noh C. M. 

0.683 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Wearing 
Protect Glasses 

Wearing Helmet + 
Protect Glasses 

Noh C. M. 

0.850 

Noh C. M. 

0.778 
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Table 4: Testing data (Groups) 

3.3.2 Improvement of the FR rate of DeepFace (SSD-ResNet model) 

As shown in the results in Tables 3 and 4, the cosine similarity 

for recognizing faces is above the minimum value. These results 

may appear promising because we set the cosine similarity value 

to 0.5 for FR based on the training data. However, compared to 

the human eye recognition accuracy of 94.90% [30], the FR ac-

curacy of the proposed algorithm is low. 

For the safety of workers in confined spaces and hazardous 

workplaces, the accuracy rate should be close to that of human 

eye recognition. Therefore, in this study, we analyzed the effects 

of normalization on the FR rate by applying normalization (Fig-

ure 15) to the fully connected layer, which is the last layer of the 

object recognition algorithm (ResNet) in the SSD-ResNet model. 

Here, normalization refers to normalizing feature values 

(MinMaxScaler function) to a range of zero to one as inputs for 

the fully connected layer. 

Name (Cosine Similarity) 
Group_1 Group_2 

Wearing helmet + 
Protect glasses Wearing helmet Wearing helmet + 

Protect glasses Wearing helmet 

Jang J. K. (0.792) Bae J. S. (0.863) Kim K. K. (0.733) Noh C. M. (0.725) 

Group_3 

Wearing helmet + 
 Protect glasses - Wearing helmet 

Jang J.K. (0.756) Kim K.K. (0.840) Bae J.S. (0.824) 

Figure 15: ResNet-SSD (Normalization) architecture 
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Table 5: Changes in FR rate with normalization (Individuals) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Bae J. S. 

0.989, 16% 

Wearing Helmet 

Bae J. S. 

0.981, 26% 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Wearing 
Protect Glasses 

Wearing Helmet + 
Protect Glasses 

Bae J. S. 

0.996, 6% 

Bae J. S. 

0.992, 12% 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Jang J.K. 

0.993, 11% 
Wearing Helmet 

Jang J.K. 

0.990, 15% 
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Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Wearing 
Protect Glasses 

Wearing Helmet + 
Protect Glasses 

Jang J.K. 

0.987, 20% 

Jang J.K. 

0.987, 18% 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Kim K.K. 

0.991, 15% 

Wearing Helmet 

Kim K.K. 

0.992, 13% 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Wearing 
Protect Glasses 

Wearing Helmet + 
Protect Glasses 

Kim K.K. 

0.987, 21% 

Kim K.K. 

0.990, 18% 
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Interestingly, the results reveal that the FR rate is approxi-

mately 18% higher than that before applying the normalization 

process. This improvement in the FR rate was calculated using 

the following equation: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐴𝐴𝐴𝐴𝐴𝐴(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)×100

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
               (3) 

The average recognition rate of the algorithm applied with the 

normalization technique proposed in this paper is approximately 

98%, which is higher than the human eye recognition accuracy 

of 94.90%. 

3.4 Analysis and summary of results 
The FR results obtained using the deep-learning-based FR al-

gorithm are listed in Tables 3 and 4. It was confirmed that FR  

using the SSD-ResNet model is sufficiently accurate (Tables 3 

and 4). However, compared to the human eye recognition accu-

racy of 94.90%, the FR rate of the proposed algorithm was low. 

However, it was clear that the FR rate was improved by applying 

normalization to the FR algorithm (ResNet) (Tables 5 and 6). It 

was confirmed that the algorithm using the proposed normaliza-

tion process has an excellent recognition rate that is competitive 

with human eye recognition accuracy. Additionally, before nor-

malization, the SSD-ResNet model had an FR rate of approxi-

mately 68% to 94% (Tables 3 and 4), which was significantly 

affected by the quality of photographs. However, after normali-

zation, the recognition rate of the algorithm ranged from 98% to 

99% (Tables 5 and 6). The proposed normalization process can 

be used as one method to improve the accuracy of object detec-

tion. However, there is a drawback to the proposed algorithm. As 

shown in Table 8, the proposed algorithm often cannot recognize 

a face when the subject is wearing a face mask. To perform FR  

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Noh C.M. 

0.988, 22% 

Wearing Helmet 

Noh C.M. 

0.984, 31% 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Image 
Name 

(Cosine similarity, 
Improvement rate) 

Wearing 
Protect Glasses 

Wearing Helmet + 
Protect Glasses 

Noh C.M. 

0.992, 14% 

Noh C.M. 

0.988, 21% 
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in the manufacturing industry, there is a need for ongoing re-

search to develop technology that can recognize faces in various 

scenarios.  

3.5 Model retraining through fine tuning 
As shown in Table 7, there were cases where subjects wearing 

a face mask could not be recognized by the proposed algorithm. 

To address this issue, we constructed an image dataset containing 

approximately 2,400 individuals wearing a face mask, as shown 

in Table 8 [31]. Subsequently, we applied fine tuning to the face 

recognition algorithm described in Section 3.3 and trained the 

model using the constructed dataset. 

The face recognition results obtained from fine tuning using 

the additional constructed dataset are presented in Figure 16. 

One can see that both the subjects wearing face masks and those 

not wearing face masks were accurately recognized. Further-

more, the results for those wearing face masks yielded a cosine 

similarity of 0.995, indicating a high recognition accuracy with a 

low error rate, similar to the subjects not wearing masks. 

Table 7: Areas for improvement in the proposed FR algorithm 

The result of recognizing a person wearing a mask. 

The result of not recognizing the person wearing the mask. 

Table 6: Changes in FR rate with normalization (Groups) 
Name (Cosine Similarity, Improvement rate) 

Group_1 Group_2 

Wearing helmet + 
Protect glasses Wearing helmet Wearing helmet + 

Protect glasses Wearing helmet 

Jang J.K. 
0.985, 20% 

Bae J.S. 
0.991, 13% 

Kim K.K. 
0.986, 26% 

Noh C.M. 
0.986, 26% 

Group_3 

Wearing helmet + 
Protect glasses - Wearing helmet 

Jang J.K. 
0.983, 23% 

Kim K.K. 
0.991, 15% 

Bae J.S. 
0.989, 17% 
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Table 8: Examples from the mask dataset 

Example 1 Example 2 

Figure 16: Results of fine tuning 

4. Conclusion
We developed an FR algorithm that is expected to play a key 

role in access control systems used for recognizing workers in 

confined and hazardous workplaces. We compared and analyzed 

the performances of conventional deep-learning-based face de-

tection algorithms (dlib, SSD-Mobilenet V2) and FR algorithms 

(VGG, ResNet), and attempted to implement an FR algorithm 

with high prediction accuracy considering various scenarios 

(e.g., with subjects wearing a helmet, protective glasses, or both).  

We selected the SSD-ResNet model (AP: 0 .99) with the high-

est AP, which is a criterion for evaluating the performance of face 

recognition algorithms. The AP of the proposed algorithm was 

found to be in the range of 0.683–0.863. Compared to the recog-

nition accuracy of human eyes (94.90%), we concluded that ap-

plying the proposed algorithm in real industrial sites would be 

insufficient. To resolve this issue, we attempted to increase 

recognition performance by applying normalized feature values 

(MinMaxScaler function) ranging from zero to one as inputs for 

the final layer (fully connected layer) of the face and object 

recognition algorithm (ResNet). As a result, we confirmed an av-

erage recognition rate increase of 18%. However, some limita-

tions of the proposed algorithm were noted. For example, 

subjects in images could not be recognized when they were wear-

ing face masks. 

To address this issue, we employed the transfer learning tech-

nique. We generated additional relevant data for training and fine 

tuning an existing pre-trained model for FR. Consequently, we 

successfully performed FR for subjects wearing face masks. 

In the manufacturing industry, it is necessary to develop algo-

rithms that can perform FR, regardless of whether a person is 

wearing a face mask or other safety equipment to protect them-

selves from the hazards posed by working environments. Accord-

ingly, we plan to conduct additional studies on other FR algo-

rithms that can be applied in different scenarios, as well as on 

intelligent image-recognition-based “Smart H.S.E.” (Health, 

Safety, Environment) systems. 
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