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Abstract: Shipbuilding companies use transport vehicles and often sign a rental contract with third-party vendors. To avoid including 

unnecessary vehicles in the contract, it is important to determine the proper number of transport vehicles when the contract is made. 

This paper presents a hybrid method for the determination of the minimum number of transport vehicles using a given task scenario in 

a shipyard. The method uses a genetic algorithm for making task-allocation decisions and uses an exact method for making the task-

sequence decisions for individual vehicles. The exact method ensures optimality, and thus the hybrid method could have better perfor-

mance than the genetic algorithm that alone determines both task-allocation and task-sequence decisions. This paper compares the 

performance of the hybrid method with that of the genetic algorithm using real industry data. The comparison shows that the hybrid 

method has improved performance, which tends to be more significant as the problem becomes more difficult to solve. 
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1. Introduction

Shipyards build massive products that comprises a large num-

ber of units of different sizes and weights. One important facility 

of the shipyards is the transport vehicles that move blocks or as-

sembly units from one place to another. The number of such ve-

hicles that a shipyard needs is dependent on the volume of mate-

rial flows of the shipyard. This volume can vary due to the vary-

ing needs of newly built ships, which are highly dependent on the 

markets. Many shipyards tend to operate the transport vehicles 

and sign rental contracts with third-party vendors instead of hav-

ing their own vehicles. To reduce material handling costs, it is 

therefore important to determine the proper number of transport 

vehicles when the contracts are made. If the shipyards reserve 

more vehicles than that they need, then the cost can increase for 

the extra (and unused) equipment. If they reserve fewer vehicles, 

then the transport needs are often delayed. The ideal number can 

be determined based on the optimal scheduling of the vehicles. 

The decision-makers can determine the number considering 

some safety margins on the minimum number.  

There have been research papers associated with the optimal 

scheduling of transport vehicles in shipyards. Ju et al. [1] present 

an iterative approach that uses the lower bound of the minimum 

number of transporters in the determination of the optimal 

schedule. The scheduling optimization continues to increase until 

a feasible schedule is found. Lee et al. [2] use a heuristic algo-

rithm to determine transporters’ optimal schedule that has the 

minimum weighted sum in the delays of picking blocks and the 

delay times of transporters. The algorithm is based on a network 

flow model and can work in a dynamic operating environment 

such as the change of block transportation requirements. Roh and 

Cha [3] propose a hybrid method for a block transportation prob-

lem in which the objective is to minimize the travel time without 

loading or interference of transporters on the road. The hybrid 

method comprises two stages: the first stage uses an ant colony 

optimization to make block allocation decisions for transporters. 

The second stage uses a GA that determines the transportation 

sequence of the blocks of each transporter. Heo et al. [4] further 

develop the method of Roh and Cha [3] considering a damaged 

path in the scheduling problem. Cha et al. [5] use the method [4] 

in an optimal planning system. Park and Seo [6] used a heuristic 

referred to as Greedy Randomized Adaptive Search Procedures 

(GRASPs) for the transporter scheduling and routing problem at 

a shipyard, in which the objective is to maximize the workload 

balance of transports making sure that all the transport tasks are 

completed in a predetermined period. Joo and Kim [7] present a 

self-evolution algorithm (SEA) in the optimal scheduling of 
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transporters. The SEA is similar to a GA but involves self-repro-

duction operators that use only a single parent in creating a new 

chromosome. The authors use a dispatching rule in decoding a 

chromosome to a transporters’ schedule that prevents infeasible 

solutions from occurring. 

Meta-heuristic algorithms have often been used for optimal 

scheduling of transport vehicles in shipyards because the compu-

tation time of exact methods increases exponentially as the prob-

lem size becomes larger. However, there are variations in perfor-

mance due to the stochastic nature of the meta-heuristic algo-

rithms. These variations can be more significant when the com-

plexity of the problem increases. The previous methods often use 

only a meta-heuristic algorithm or an exact method. Although 

there are hybrid methods, the methods combine one meta-heuris-

tic algorithm and another. To take advantages of both meta-heu-

ristic algorithm and exact method, this paper presents a hybrid 

method that combines a meta-heuristic algorithm and an exact 

method for the determination of the minimum number of 

transport vehicles in a shipyard.  

2. Mathematical Description of the Problem

This section describes the minimum number determination 

problem for transport vehicles in a mathematical manner. The 

basic assumptions are 1) the vehicles are homogeneous, 2) the 

vehicles can perform any transport task, and 3) all tasks are 

known and each task has a deterministic timespan (or working 

hour); and the transition time between tasks is known. On this 

basis, two mixed integer linear programming models are made 

using two different assumptions: 1) fixed start time and 2) flexi-

ble start time of the tasks. 

2.1 Optimization model for a fixed start time problem 
This model is made assuming that each task has a specific start 

and finish time. This allows the conflicts of operation time be-

tween tasks to be identified before solving the problem. The 

model does not have subtour elimination constraints, which ex-

ponentially increase the computational time. Equations (1)-(6) 

describe the model. 

Sets: 

𝑉 Vehicles, indexed by 𝑖 

𝑇 Tasks, indexed by 𝑗 or 𝑘 

Parameters: 

𝑀 Big number 

𝑆𝑇௝ Start time of task 𝑗 

𝐹𝑁௝ Finish time of task 𝑗 

𝑇𝑅௜௝ 
Transition time from task 𝑖 to  

task 𝑗 

Variables: 

𝑥௜௝ 
1 if vehicle 𝑖 performs task 𝑗,  

0 otherwise 

𝑦௜ 1 if vehicle 𝑖 is used, 0 otherwise 

Model: 

Max ෍ 𝑦௜

௜∈௏

 (1) 

෍ 𝑥௜௝

௝∈்

൑ 𝑀𝑦௜ 𝑖 ∈ 𝑉 (2) 

෍ 𝑥௜௝ ൌ 1
௜∈௏

 𝑗 ∈ 𝑇 (3) 

𝑥௜௝ ൅ 𝑥௜௞ ൑ 1 
𝑖 ∈ 𝑇, 

𝑗 ∈ 𝑇, 

𝑘 ∈ 𝑉 

(4) 

𝑥௜௝ ∈ ሼ0,1ሽ 
𝑖 ∈ 𝑉, 

𝑗 ∈ 𝑇 
(5) 

𝑦௜ ∈ ሼ0,1ሽ 𝑖 ∈ 𝑉 (6) 

Equation (1) is the objective function that minimizes the num-

ber of vehicles that are used. Equation (2) associates varia-

ble 𝑥௜௝ with 𝑦௜  making sure that 𝑦௜ has 1 if vehicle 𝑖 is used in 

more than one task. Equation (3) ensures that each task is per-

formed by a vehicle only once. Equation (4) allows vehicle 𝑣 to 

perform both task 𝑖 and task 𝑗 only if the operation time of the 

tasks does not conflict to each other, in which if 𝑆𝑇௝ ൅ 𝑇𝑅௝௞ ൏

𝐹𝑁௞ or  𝑆𝑇௞ ൅ 𝑇𝑅௞௝ ൏ 𝐹𝑁௝ , task  𝑗 and task  𝑘 are compatible, 

otherwise, they are conflicted. Equations (5) and (6) define the 

decision variables. 

2.2 Optimization model for a flexible start time problem 
This model is made assuming that the start time of each task is 

flexible. In other words, there is no predetermined sequence be-

tween the tasks. Therefore, the model needs to include both task 

allocation and sequence decisions. The model is built based on a 

network model in which nodes indicate tasks and arcs indicate 

the transition from one task to another. There are two extra nodes 

referred to as source node and sink node. They represent the start 
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and finish of the network, respectively. According to node com-

bination, arcs belong to one of the subsets referred to as ‘pull-out 

arcs’, ‘pull-in arcs’, and ‘deadhead arcs.’ The arcs in the pull-out 

arcs have source-task node combination, the arcs in the deadhead 

arcs have task-task node combination, and the arcs in the pull-in 

arcs have task-sink node combination. Figure 1 describes the 

network model and the arc subsets. 

Figure 1: An example of a network-based model using three sub-

sets of arcs 

Equations (7)-(16) define the flexible start time model using 

the network model. Equation (7) is the objective function that 

minimizes the number of vehicles that are used. Equation (8) 

ensures that all tasks are performed by one of the vehicles once. 

Equations (9)-(11) are the flow conservation constraints of the 

network model. Equation (12) makes sure that all the vehicles 

can perform the allocated tasks within the given time. Equation 

(13) is the sub-tour elimination constraints. Equation (14) and 

(15) define the decision variables. 

Sets: 

𝑁 Nodes, indexed by 𝑛 

𝑇 
Nodes associated with tasks, 

indexed by 𝑡 

𝑉 Vehicles, indexed by 𝑘 

𝐴 Arcs, indexed by ሺ𝑖, 𝑗ሻ 

𝐴௣௢ Pull-out arcs, indexed by ሺ𝑖, 𝑗ሻ 

𝐴௣௜ Pull-in arcs, indexed by ሺ𝑖, 𝑗ሻ 

𝐴ௗ௛ Deadhead arcs, indexed by ሺ𝑖, 𝑗ሻ 

Parameters: 

𝑀𝑉௜௝ Transition time of arc (𝑖, 𝑗ሻ 

𝑊௜ Working time of task 𝑖 

𝑇𝑅௜௝ Transition time from node 𝑖 to node 𝑗 

𝐹𝑁 Finish time of the timetable 

𝑀 Big number 

Variables: 

𝑥௜௝௞ 
1 if arc (𝑖, 𝑗, 𝑘 ) is selected, 0 other-

wise 

𝑢௜ 
𝑖 -th dummy variable that for elimi-

nating subtours 

Model: 

Max ෍ ෍ 𝑥௜௝௞

ሺ௜,௝ሻ∈஺೛೚௞∈௏

 (7) 

s.t. ෍ 𝑥௜௝௞

ሺ௜,௝ሻ∈஺೛೚∪஺೏೓

ൌ 1 𝑗 ∈ 𝑇, 

𝑘 ∈ 𝑉 
(8) 

෍ 𝑥௜௝௞

ሺ௜,௝ሻ∈஺೛೚

ൌ ෍ 𝑥௜௝௞

ሺ௜,௝ሻ∈஺೛೔

 𝑘 ∈ 𝑉 (9) 

෍ 𝑥௜௝௞

ሺ௜,௝ሻ∈஺೛೚

൑ 1 𝑘 ∈ 𝑉 (10) 

෍ 𝑥௜௝௞

ሺ௜,௝ሻ∈஺೛೚∪஺೏೓

ൌ ෍ 𝑥௝௜௞

ሺ௜,௝ሻ∈஺೛೚∪஺೏೓

 

𝑗 ∈ 𝑇, 

𝑘 ∈ 𝑉 
(11) 

෍ 𝑥௜௝௞

ሺ௜,௝ሻ∈஺೏೓

൑ 𝑀 ෍ 𝑥௜௝௞

ሺ௜,௝ሻ∈஺೛೚

 𝑘 ∈ 𝑉 (12) 

෍ 𝑊௝𝑥௜௝

ሺ௜,௝ሻ∈஺೛೚∪஺೏೓

൅ ෍ 𝑇𝑅௜௝𝑥௜௝

ሺ௜,௝ሻ∈஺೏೓

൑ 𝐹𝑁 
𝑘 ∈ 𝑉 (13) 

𝑢௜ െ 𝑢௝ ൅ 𝑀𝑥௜௝௞ ൑ 𝑀 െ 1 
ሺ𝑖, 𝑗ሻ

∈ 𝐴, 

𝑘 ∈ 𝑉 

(14) 

𝑥௜௝௞ ∈ ሼ0,1ሽ 
ሺ𝑖, 𝑗ሻ

∈ 𝐴, 

𝑘 ∈ 𝑉 

(15) 

0 ൑ 𝑢௜ 𝑖 ∈ 𝑁 (16) 

3. A Hybrid Method for the Flexible Start Time

Problem 

As Joo and Kim [7] present, using an exact method alone for 

the flexible start time problem causes an exponential increase in 

computation time as the problem size increases. To avoid that 

problem, this paper uses a hybrid method that combines a GA 

and an exact method in which the GA determines task allocation, 

and the exact method determines task sequence, respectively. 

Figure 2 describes the overall process. 

Figure 3 describes the chromosome representation of the GA. 

The number of tasks defines the length of the chromosome. Each 

task is associated with a gene that comprises the vehicle 
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identification number (ID) allocated and the priority value of the 

task. The priority values determine the task sequence in which a 

lower value task receives a higher priority. 

Figure 2: The overall process of the hybrid method 

Figure 3: Chromosome representation scheme 

In ‘Create initial population,’ the GA creates initial chromo-

somes that have random priority values. In ‘Determine task se-

quence’, the exact method fixes the priority values solving the 

traveling salesman problem (TSP), which is a well-known opti-

mization problem in which the objective is to minimize the travel 

distance visiting a list of nodes only once [8]. Dantzig et al. [9] 

present the branch-and-cut method for symmetric TSPs and East-

man [10] and Little et al. [11] present the branch and bound 

method for asymmetric TSPs. Such methods have been improved 

further and are available in commercial optimizers such as the 

solvers of CPLEX [12] and Gurobi [13].  

The solution of a TSP has a cycle that indicates the start node 

and the finish node are same; thus, the longest arc of the TSP 

solution needs to be removed for the task-sequencing problem. 

Figure 4 describes the removal in the conversion of a TSP solu-

tion to the optimal task sequence of vehicle 1 in Figure 2. 

Figure 4: Conversion of a TSP solution to the optimal task se-

quence 

In ‘Reproduce a population,’ crossover, mutation, and elite op-

erators create new chromosomes. This paper uses a one-point 

cutting crossover represented in Figure 5. The exact method 

fixes the task sequences solving TSPs when all chromosomes are 

created. 

Figure 5: An example of a one-point cutting crossover 

When the hybrid method determines both task allocation and 

sequence, the task schedule of individual vehicles can be created 

using the working time and transition time, which are defined 

as 𝑊௜ and 𝑇𝑅௜௝ in Section 2.2, respectively. Figure 6 illustrates 

the conversion of a chromosome to a timetable. 

Figure 6: An example of the conversion from a chromosome to a 

timetable 

4. Case Study

This section describes a case study in which the hybrid method 

was applied to a real-world problem. In the case study, a shipyard 

was operating with multiple types of transport vehicles signing 

rental contracts with third-party vendors, but the prime focus is 

forklifts (see Figure 7). The shipyard was using 61 forklifts and 

wanted to determine the minimum number using previous 

transport tasks. 

The determination used the data that were collected from the 

forklifts using real-time sensors. The data include 1) data acqui-

sition time, 2) the position of forklifts, and 3) status of the fork-

lifts in which the status indicates if the forklift is working or not. 

Figure 8 describes the working history of the forklifts made us-

ing the data. The horizontal axis indicates the IDs of the forklifts 
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and the vertical axis indicates the time periods, assuming that a 

day comprises 10 hours between 8:00 to 18:00. The length of a 

time period is an hour. The white-to-red colour indicates the 

work density of the forklifts defined by working time per hour. 

Figure 7: An example of a forklift 

Figure 8: The density of work of forklifts 

An interesting observation in Figure 8 is that the work density 

in the top-left area is 0. This appears because the shipyard had 

installed the sensors gradually from the forklifts at the bottom in 

Figure 8. Transport tasks were defined using the work density 

assuming that in the same day, the continuous time periods that 

have work density over 0.5 were defined as a collective task. Ta-

ble 1 describes the tasks created using the definition. The task 

information comprises a start time, working hour, start position, 

and finish position. The value in the column ‘start time’ indicates 

‘year.month.day.hour.minute.second.’ The unit of the column 

‘working hour’ is an hour. The start position and finish position 

indicate the node IDs in Figure 9, in which the shipyard is rep-

resented using 48 nodes and 56 undirected edges. Table 2 de-

scribes the information of the edges. 

Table 1: An example of task information 

Task (𝑡) Start time 
Working 

hour 

Start 

position 

Finish 

position 

1 2020.01.09.08.00.04 3.66 36 39 

2 2020.01.09.08.05.28 3.87 26 26 

3 2020.01.09.08.02.45 1.95 19 28 

4 2020.01.09.09.00.13 2.90 25 19 

Figure 9: The graph representation of the shipyard 

Table 2: Edge information 
Edge Node pair Edge Node pair Edge Node pair 

1 (1, 4) 20 (17, 20) 39 (31, 32) 

2 (2, 5) 21 (18, 19) 40 (31, 35) 

3 (3, 6) 22 (19, 28) 41 (32, 33) 

4 (4, 5) 23 (20, 21) 42 (34, 36) 

5 (5, 6) 24 (20, 23) 43 (35, 36) 

6 (5, 9) 25 (21, 22) 44 (35, 38) 

7 (6, 10) 26 (21, 27) 45 (36, 37) 

8 (7, 8) 27 (23, 24) 46 (36, 43) 

9 (8, 9) 28 (23, 25) 47 (38, 39) 

10 (9, 10) 29 (24, 26) 48 (38, 42) 

11 (10, 11) 30 (25, 26) 49 (39, 40) 

12 (10, 14) 31 (26, 27) 50 (40, 41) 

13 (12, 13) 32 (26, 29) 51 (42, 45) 

14 (13, 14) 33 (27, 30) 52 (43, 44) 

15 (13, 15) 34 (27, 32) 53 (44, 45) 

16 (14, 17) 35 (28, 29) 54 (45, 46) 

17 (15, 16) 36 (29, 30) 55 (46, 47) 

18 (15, 18) 37 (30, 31) 56 (46, 48) 

19 (17, 19) 38 (30, 34) 

The transition time between task 𝑖 and task 𝑗 was computed us-

ing the finish position of task 𝑖 and the start position of task 𝑗 as-

suming that the vehicles move at 10 km/h in a constant speed, 

and the vehicles always use the shortest paths determined by the 

Dijkstra algorithm using the graph in Figure 9. Tables 3-4 show 

examples of the task-to-task transition time  𝑇𝑅௜௝ and shortest 

paths, respectively. 
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Table 3: Samples of task-to-task transition time (𝑇𝑅௜௝). 

Task 𝑗 

1 2 3 4 5 

Task 𝑖

1 0.01 0.17 0.32 0.32 0.22 

2 0.13 0 0.18 0.18 0.12 

3 0.28 0.18 0 0 0.11 

4 0.28 0.28 0 0 0.11 

5 0.13 0.07 0.15 0.15 0.05 

Note: Unit of transition time is hour. 

Table 4: Samples of shortest paths between node 𝑖 and node 𝑗. 

node 𝑖 node 𝑗 Distance Shortest path 

1 2 1.32 1-4-5-2 

1 3 1.65 1-4-5-6-3 

… 

1 48 5.64 
1-4-5-9-10-14-17-19-28-29-30-31-35-

38-42-45-46-48 

… 

48 46 0.33 48-46 

48 47 0.51 48-46-47 

Note: Unit of travel distance is km. 

Figure 10: The minimum number of forklifts; the vertical axis 

indicates vehicle IDs and the horizontal axis indicates time peri-

ods 

Calculating the minimum number of the forklifts is the flexible 

start time problem because the shipyard considers the start time 

to be flexible. In applying the hybrid method, the level of diffi-

culty of the problem is proportional to the number of tasks, which 

determines the length of chromosomes, and the maximum num-

ber of vehicles. This in turn determines the value range of genes. 

To reduce the level of difficulty, the upper bound was used to 

determine the maximum number of forklifts instead of consider-

ing all given 61 forklifts. The minimum number of the fixed start 

time problem can be used for the upper bound because the opti-

mal solution of the fixed start time problem is always greater than 

or equal to that of the flexible start time problem, i.e., the con-

straints of the flexible start time problem are a subset of the fixed 

start time problem. For instance, Figure 10 describes the optimal 

solution of a fixed start time problem in which the minimum 

number of forklifts is 19. This can be used to determine the max-

imum value of allocated forklift IDs in creating the genes of the 

hybrid method for the flexible start time problem. 

Although the data were collected from 28th September 2019 to 

9th January 2020, it is difficult to use all data because many of the 

sensors were installed late. The determination thus used the last 

five days, in which most of the forklifts have sensors. Figure 11 

describes the upper bound denoted by ‘Up.’ and the number of 

tasks of the selected dates denoted by ‘No.’, respectively. Figure 

12 describes the optimal schedules that use the minimum number 

of forklifts for the dates. The vertical and horizontal axes of Fig-

ures 11-12 are same with that of Figure 10, in which the axes 

indicate vehicle IDs and time periods, respectively. 

Figure 11: The upper bound and the number of tasks 

Figure 12: The minimum number of forklifts with a flexible start 

time problem 

In addition, the performance of the hybrid method was com-

pared with that of the GA using the dates. Both the hybrid method 

and the GA use 50 chromosomes, and the termination criterion 

reaches the 2000th iteration. The fraction of crossover, mutation, 

and elite is 80%, 12%, and 8%, respectively. These parameters 

were determined based on numerous trials. The TSPs were 

solved using CPLEX’s solver [12] to make task-sequence deci-

sions. Figure 13 describes an example of the convergence of the 

objective value over the 2000 iterations. 
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Figure 13: The convergence of objective values of the hybrid GA 

There can be variation in performance because of the stochas-

tic nature of the GA. The comparison thus uses 20 replicates for 

the hybrid method and the GA at each date. Table 5 presents 

comparison results in which 𝜌̅ indicates the mean of the relative 

percentage deviations, and each 𝜌 was computed by ௫ି௫∗

௫∗ . 

Herein, 𝑥∗ and 𝑥~ are the optimal solution and the worst solution 

respectively, and they indicate the minimum and the maximum 

numbers found in the 20 replicates; 𝑥 is the minimum number 

found in each replicate. Both the hybrid method and the GA 

could determine the minimum number more than several times 

out of the 20 replicates in all the dates. Although the solution 

found in a replicate was not optimal, the absolute gap is only 1 

(see all gaps between the best and worst solution for all dates). 

However, the 𝜌̅ shows that the hybrid method has more stable 

performance than the GA with a higher success rate of determin-

ing the optimal solution. 

Table 5: The performance comparison between the hybrid 

method and the GA 

GA Hybrid method 

𝜌̅ 𝑥∗ 𝑥~ 𝜌̅ 𝑥∗ 𝑥~

Date 1 0% 5 5 0% 5 5 

Date 2 0% 6 6 0% 6 6 

Date 3 16% 6 7 9% 6 7 

Date 4 10% 8 9 6% 8 9 

Date 5 8% 11 12 3% 11 12 

   Solving the TSP of the hybrid method could increase the 

computation time because it is an additional process that GA does 

not have. Thus, one needs to compare computation time between 

the hybrid method and the GA. Figure 14 shows the average 

computation time in each date. As the upper bound and the 

number of tasks increase, the computation time of both the hybrid 

method and the GA tend to increase; the computation time of the 

GA is always less than the hybrid method. However, the average 

computation time in the worst case was about 10 seconds: this 

computation time is not significant when it come to the purpose 

of the problem, in which real-time scheduling is not the primary 

concern. Thus, the computation time of the hybrid method seems 

to be reasonable. 

Figure 14: Comparison between the hybrid method and GA in 

average computation time for each date 

It is also worth investigating how the computation time of 

TSPs increases in different number of nodes. For this, some nu-

merical experiments were carried out, in which the number of 

nodes increases from 4 to 18. Figure 15 describes the results of 

the experiments. When the number of nodes is less than 14, the 

computation time is less than one second. The computation time 

then increases exponentially. When considering that the average 

number of tasks assigned to a vehicle is around 6, the problem-

solving time for TSPs is not significant in the minimum number 

determination problem. 

Figure 15: Experiments on the computation time of TSPs in different 

number of nodes 

5. Conclusion

In this paper, a hybrid method was presented for the determi-

nation of the minimum number of transport vehicles in a ship-

yard. The hybrid method uses a GA for making task allocation 

decisions and an exact method for making task-sequence deci-

sions. The exact method determines the optimal task sequence by 
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solving TSPs. The objective is to determine the shortest round-

trip path that visits all given nodes only once. Because the exact 

method ensures the optimality of the task sequence, the hybrid 

method could have better performance than the GA that alone 

makes both task allocation and task sequence decisions. The hy-

brid method was presented in a case study in which previous 

tasks in a shipyard were analyzed using working data from fork-

lifts collected using real-time sensors. Using the tasks, the per-

formance of the hybrid method was compared with that of a GA. 

The comparison shows that the hybrid method has better perfor-

mance than the GA; this superiority can be more significant as 

the problem becomes more difficult to determine the optimal so-

lution.  

The case study in this paper deals with a single type of vehi-

cles. However, the shipyard operates multiple types of vehicles 

with different levels of capacities. Future studies should study 

heterogeneous vehicles considering the difference of each vehi-

cle type, i.e., operating costs and compatibility between the tasks 

and the vehicles.   

There are potential risks in solving the TSPs using commercial 

optimizers such as the solvers of CPLEX [12] and Gurobi [13]. 

Although there have been significant improvements in the per-

formance of the commercial optimizers, the computation time of 

solving the TSPs can increase exponentially as the number of 

tasks increase. In this case study, the maximum number of tasks 

allocated to a vehicle was 12, which is not problematic in terms 

of computation time. However, there may need to be a strategy 

for cases in which the maximum number could be problematic 

with commercial solvers because of the increased computation 

time.  
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