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Abstract: Small unmanned aerial vehicles, commonly known as drones, and their related industries are improving in leaps and bounds. 

The global drone industry began with a military focus and subsequently progressed into commercial applications. Consequently, abuse 

cases linked to drone technology are gradually increasing. Following the technical advancement in drone technology, studies on drone 

detection and prevention are actively ongoing. This is one such study. Radar-based drone detection that combines various existing 

sensors or equipment has shortcomings, including high costs and specialist operations. Thus, this paper proposes a drone-detection 

system that uses only thermal images from short-wavelength infrared (SWIR) cameras. The YOLO model, which is widely used for 

object recognition, was used for the drone-detection algorithm. Labels were attached to 22,921 thermal images to test the constructed 

system; 16,121 images were used for training and the remainder for testing. The test results showed 98.17% precision and 98.65% 

recall. Learning through drone-image shooting in various environments, after removing static from clouds and other noise, is expected 

to improve detection performance in the future. 
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1. Introduction
Small unmanned aerial vehicles refer to aerial vehicles of less 

than 2–3 m in length that are operated remotely. The industry re-

lated to small aerial vehicles, commonly referred to as drones, is 

rapidly advancing [1]. In the beginning, drones were utilized for 

military purposes, followed by commercial applications, which 

are rapidly expanding. The market size of drone-related sectors 

is expected to grow from approximately USD 11.4 billion in 2019 

to USD 20.2 billion in 2025 [2]. Drone-related technologies, such 

as battery-capacity expansion and drone miniaturization, are also 

improving in leaps and bounds, based on such drone-market 

growth. 

Recently, drone-abuse cases by individuals or groups, involv-

ing chemicals and small terrorist bombings, have become a 

global problem [3]. Thus, the trend of anti-drone technology to 

prevent such crimes and abuse is also advancing. 

 Anti-drone technology refers to the combination of drone-de-

tection technology and drone-flight neutralization technology. 

Currently, technologies that combine various sensors, such as ul-

tra-high definition radar, microphones, cameras, and Radio-Fre-

quency (RF) detection, are being developed and utilized for 

drone detection [4].  

One representative detection technology [7] uses radar [5]-[6] 

or images from trick shooting. However, such detection technol-

ogy has high system-configuration costs and requires specialist 

system operations. Therefore, it is unsuitable for personal or 

home uses, and it lacks portability.  

Thus, this paper proposes a drone-detection system using YOLO 

(“You only look once”) [8], a deep learning–based algorithm that 

has recently been utilized in the image-processing area, utilizing 

only images shot by short-wavelength infrared (SWIR) cameras, 

without the need for special sensors or detection devices. 
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The paper proceeds as follows: Chapter 2 provides a simple 

description of the YOLO algorithm used for this study. Chapter 

3 provides a detailed description of the proposed system struc-

ture, Chapter 4 evaluates the performance of the proposed sys-

tem, and Chapter 5 presents the conclusion and direction for fu-

ture studies. 

2. Related Work
2.1 YOLO Algorithm 

The YOLO algorithm considers the locations of bounding 

boxes and the class probability as a regression problem to guess 

the classes and locations of objects by looking at them once on 

video streams or images. It measures the locations of bounding 

boxes that cover labeled objects, after dividing the input images 

by an S ☓ S grid. Anchor boxes that overlap the bounding boxes

that are separated by the grid guess the objects' class probabili-

ties, probabilities of the objects' presence, locations of object cen-

ters, and width and height of the bounding boxes to measure the 

confidence score. As results, the YOLO network outputs infor-

mation on the bounding boxes and confidence score. Figure 1 

shows the entire process. 

Figure 1: Cross-stage partial network structure 

In Figure 1, the bounding boxes and class probability are esti-

mated by dividing the input images by 7 × 7 (S = 7), and the lo-

cations and classes of the objects are finally recognized by com-

bining them. The confidence score relates to whether objects are 

really present in the bounding boxes and how much the con-

cerned class is reflected. It can be calculated as shown in Equa-

tion (1). 

Confidence score = P(class) ☓ IoU,    (1)   

where IoU (Intersection over Union) is the value resulting from 

dividing the size of the intersection of the correct-answers box 

and the prediction box by the size of the union, referring to the 

degree of overlap. In other words, if there is no intersection, IoU 

is 0, and if they completely overlap, it is 1. 

2.2 YOLO v4 
YOLO v4 [10] is the latest YOLO-algorithm version released 

in 2020. Figure 2 shows the object-detection process for YOLO 

v4. 

Figure 2: Object-detection process of YOLO v4 

Data input through a Convolutional Neural Network (CNN) 

using input images are divided into various channels through the 

backbone–neck module. Objects are detected through the basic 

YOLO algorithm for a grid divided in this manner. The perfor-

mance of YOLO v4 has been improved from the previous 

method, which used YOLO v3 [11] as the head, a CSP (cross-

stage partial) network [12] as the backbone, and SPP (spatial pyr-

amid pooling) [13] as the neck with a PAN (path-aggregation net-

work) [14]. Therefore, to improve the performance of the preced-

ing research, this study constructs an image analyzer with YOLO 

v4. 

2.3 CSP 
CSP is an optimization method that reduces the computation 

by 20% by removing the values of repeated gradients generated 

from the CNN learning process. Figure 3 shows the differences 

between networks where the CSP method is applied and not ap-

plied. 
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Figure 3: CSP network structure 

In Figure 3, while (a) shows the images going through the 

dense block using all of the output of the first layer, (b) shows 

only some passing through the partial dense block, with the rem-

nant conveyed to the transition layer before being combined.   

Through this process, the values of repeatedly computed gra-

dients can be removed when the error back-propagation algo-

rithm is applied to the CNN. 

2.4 SPP 
SPP is a method to improve accuracy, breaking away from us-

ing only fixed-sized images, which was pointed out as a limita-

tion of the YOLO algorithm. Figure 4 shows the SPP network 

structure, with examples from specific networks. 

Figure 4: SPP network structure 

In Figure 4, feature maps for as many filters as went through 

the convolution layer go through the SPP network. Additionally, 

they are converted to fixed-sized output data. As the CNN-based 

YOLO algorithm could only use fixed-sized images as input data, 

the learning-data categories became narrower, or the original im-

ages had to be modified or cut. This was attributed to the fact that 

each neuron had a fully connected structure in the CNN structure. 

SPPs enable the use of various-sized images for input; thus, they 

simultaneously break away from this structure and the fixed-

sized output. 

2.5 PAN 
PAN, as a segmentation model, resolves imbalances in feature 

information through changes in the network structure because 

low-level features have less influence on the results than high-

level features do on the final output layer in the previous CNN-

layer structure. This method is referred to as bottom-up path aug-

mentation. 

3. Drone-Detection System with SWIR Cameras
Figure 5 shows the entire configuration diagram of the pro-

posed deep learning–based drone-detection system with SWIR 

cameras. The proposed system is composed of an image analyzer 

and an integrated controller. The image analyzer is a deep learn-

ing–based drone-detection system, as described in Chapter 2. The 

integrated controller controls the pan-tilt and SWIR cameras, dis-

plays images from the SWIR cameras, receives event infor-

mation from the image analyzer, and displays it by overlapping 

it over the SWIR images when events, e.g., drone detection, oc-

cur. The following paragraphs provide detailed explanations of 

the image-analyzer and integrated-controller systems. 

Figure 5: Hardware structure of the deep learning–based drone-

detection system with SWIR cameras 

3.1 Deep learning–based image analyzer 
The deep learning–based image analyzer detects the locations 
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of drones after receiving input thermal images from the SWIR 

cameras; it transmits the results and event information to the in-

tegrated controller.  

The deep-learning model uses the YOLO v4 algorithm de-

scribed in Chapter 2. The thermal images used for input are di-

vided based on frames and converted to one image per frame. 

The proposed system divides images based on 30 frames per sec-

ond.  

Figure 6 shows examples of the drone locations on the divided 

images. (a) shows the image of a drone flying on an overcast day 

with thick clouds. (b) is a shot of a drone flying on a fine, slightly 

cloudy day. The blue boxes in each image are labels attached to 

the images to indicate the locations of the drones that should be 

detected. 

Figure 6: Images of drones applied to the deep-learning model 

The locations of the drones marked in Figure 6 are converted 

to the same type of vertex coordinate as shown in Figure 7. The 

numbers in Figure 7 represent the object’s class number, x-coor-

dinate, y-coordinate, width, and height, respectively. 

Figure 7: Example of converted input data 

Each value in Figure 7 shows the class numbers of the objects, 

x- and y-coordinates of the bounding boxes, width, and height in 

sequence. Each vertex coordinate is considered a bounding box 

and saved as a text file. Information on the bounding boxes of 

each image is used as learning data for the deep-learning model 

(YOLO v4). When the learning is completed, according to the 

learning algorithm described in Chapter 2, the drone locations are 

detected on the input images before the results are sent to the in-

tegrated controller. 

Figure 8 shows an example of how the drones detected 

through the deep learning–based image analyzer are displayed on 

the monitor of the integrated controller. The coordinates of the 

detected drone in Figure 5 are output by the image analyzer with 

a data type that matches the input data in Figure 7. The data are 

produced in the order of class numbers, x- and y-coordinates of 

the detected bounding boxes, width, and height. These data are 

sent to the integrated controller to display red bounding boxes. 

The names of the concerned objects are attached to the upper 

right of the bounding boxes on the monitor images of the inte-

grated controller. 

Figure 8: Examples of output images of detected drones 

3.2 Integrated Controller 
The integrated controller controls the pan-tilt and SWIR cam-

eras, displays the images input from the SWIR cameras, receives 

event information, e.g., the locations and movements of recog-

nized drones, from the image analyzer, and displays the infor-

mation by overlaying it on the images from the SWIR cameras 

already displayed. The detailed hardware configuration of the in-

tegrated controller is shown in Table 1. 

Table 1: Detailed hardware configuration of the integrated con-

troller 

Device Specification 

Processor 

LGA 1151 Socket / 9th Generation Processors 
(14nm Process Technology) Intel® Core™ 
i9-9900K Processor 3.60GHz / 16M Cache, 
up to 5.00 GHz 

Memory SAMSUNG DDR4 32GB System Memory 
(2666MHz, 16GB x 2EA Dual Channel) 

Graphics 
Feature 

NVIDIA Geforce RTX 2080 Ti GDDR6 
11GB 

Storage SAMSUNG 2.5" Solid State Drive 1TB 
(MLC, M.2 NVMe) 

ETC 

EIA RS-310C 19" Rackmount Standard 
4U Chassis Height 
Shock&Vibration Resist Drive Bay 
Drive Panel Door With Keylock 

The integrated controller does not simply detect drones; it also 

displays their routes by tracking them. It allows users to easily 

see the detected drones by tracking their routes, even when they 

are misrecognized. 
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4. Experiments
4.1 Experimental Environment 

This study upgraded the YOLO algorithm version from v3 to 

v4 by developing an experiment from preceding research [15]. It 

simultaneously quadrupled the volume of drone images as learn-

ing data from 5,734 to 22,921. The increased learning data were 

shot directly by SWIR cameras. Thirty image frames per second 

were obtained by flying small drones over 1.5-2 km distances. 

A program called Darklabel was used to establish these learn-

ing data [16]. The learning data were established by attaching la-

bels, x-coordinates, y-coordinates, width, and height values to all 

the images obtained through this program. Out of 22,921 images 

of established learning data, 21,437 images included drones and 

1,484 images did not. Seventy percent of the data were estab-

lished for training and 30% were used for testing. Consequently, 

16,121 images were used for training, with 6,800 used for testing. 

4.2 Parameters and Deep Learning–Model Structure 
The batch size and subdivision values were all set to 64, as 

hyperparameters used for training, with the epoch number at 

61,000. The computing resources used for training are as shown 

in Table 2 and are the same as those in the preceding study [15]. 

The YOLO v4–darknet53–conv.137 deep-learning model was 

used for training. The network structure is as shown in Figure 9. 

Table 2: Computing resources used for training 

Device Specification 

Operating System Ubuntu 18.04.1 LTS(GNU/Linux 
4.15.0-66generic X86_64) 

Processor Intel® Xeon® CPU E5-1660 v3 @ 
3.00GHz 

Memory 64GB 
Graphics Feature Titan RTX 24GB 
CUDA Version 10.1 

Table 3: Confusion matrix of the deep learning–based image an-

alyzer 

Confusion 
Matrix 

Actual class 
Total 

P N 

Predicted 
class 

P 6,058(TP) 113(FP) 6,171 
N 342(FN) 287(TN) 629 

Total 6,400 400 6,800 
% P: Positive, N: Negative 

TP: True Positive, FP: False Positive 

TN: True Negative, FN: False Negative 

Figure 9: YOLO v4–darknet53–conv.137 model structure 

(architecture) 

Table 4: Performance test of the deep learning–based image an-

alyzer 

Measure Formula Value 

Precision(PPV) 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
0.9817 

Recall(TNR) 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
0.9465 

mean Average Pre-
cision(mAP) PPV × TNR 0.9292 

F1 
2𝑇𝑇𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹𝑇𝑇

0.9638 

Accuracy(ACC) 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹
0.9330 

False alarm rate 
(FPR) 

𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹

0.2825 

Specificity(TNR) 
𝑇𝑇𝐹𝐹

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹
0.7175 

4.3 Performance Test and Discussion 
The deep-learning model was trained and tested using the 

model shown in Figure 9. Table 3 shows the test results ex-

pressed in a confusion matrix. 

In Table 3, images including drones are marked as positive 

(P), with those not including drones marked as negative (N). 

Thus, TP (true positive) refers to the frequency of accurate pre-

dictions of the presence of drones; false positive (FP) is the fre-

quency of predictions of the presence of drones, when no drones 

are present. Furthermore, FN (false negative) refers to the 
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frequency of predictions of the absence of drones, when drones 

are actually present, and TN (true negative) is the frequency of 

accurate predictions of the absence of drones. Table 4 shows the 

results of the performance test using Table 3. 

The precision in Table 4 is the measurement of the accuracy 

of the predictions of the presence of drones; the precision of the 

proposed system is 98.17%. This means that its prediction results 

are mostly accurate. Recall is a measurement of how accurately 

a system predicts images including drones; the recall of the pro-

posed system is 94.65%. This means that it does not detect about 

five percent of drones; hence, it has considerable room for im-

provement. 

The F1 measurement (F1 score) is the harmonic mean of the 

precision and recall; the F1 measurement of the proposed system 

is 96.38%. The accuracy is a measure of how accurately it pre-

dicts all classes or labels, and the accuracy of the proposed sys-

tem is 93.3%, with room for improvement. The false-alarm rate 

is the rate of incorrect predictions about images without drones, 

predicting that they are present. The false-alarm rate of the pro-

posed system was 28.25%, which is very high. The specificity is 

the rate at which the system accurately predicts images without 

drones, predicting that drones are not present. The specificity of 

the system was 71.75%. 

In summary, our system still has considerable room for im-

provement in terms of the false-alarm rate and specificity. It is 

believed that the proposed system recognizes clouds or other 

noise as drones because the drones are relatively small in the re-

motely shot images. It is deemed that additional studies on re-

moving such noise should be conducted in the future. 

Furthermore, the proposed system not only detects drones, but 

also tracks their locations. However, its real-time tracking func-

tion was not reflected in the test. In other words, consecutive im-

ages were not used as test data; therefore, its location-tracking 

function was not tested. 

4.4 Analysis in Comparison with Preceding Research 
This study was a further development of the methodology of a 

previous study and contains four differences, which are summa-

rized in Table 5. 

This study updated the composition of the deep learning–based 

image analyzer of the preceding research [15] from the YOLO 

v3 algorithm to YOLO v4, and quadrupled the volume of learn-

ing data from 5,734 images in the previous study to 22,921, to 

enhance the detection accuracy of the image analyzer. 

Table 5: Differences between preceding research and this study 

Preceding research This paper 
Deep learning model YOLO v3 YOLO v4 
Vol. of learning data 5,734 22,921 

Systemization X O 
mAP 98.4% 92.9% 

Moreover, the deep-learning model was transplanted to its in-

tegrated controller, the embedded hardware, to raise its actual us-

ability. In the previous study, drone detection could only be car-

ried out when shot images were input. However, as the system of 

this study uses real-time input data shot by SWIR cameras, if the 

integrated controller can be installed in a given environment, 

drone detection can be carried out anywhere.  

The mAP (mean average precision), the typical performance 

metric in the image-processing area, was used to compare our sys-

tem's performance with that of the preceding research. With the 

preceding research at 98.4% and that of this system at 92.9%, the 

preceding research was about 5.5% higher. However, this differ-

ence seems to be due to randomly sampling the evaluation data 

from the training data, as mentioned in the previous study. Based 

on this, in this study, the volume of learning data was quadrupled, 

and new learning data were made to study the deep-learning model, 

avoiding the possibility of overfitting, as was pointed out in the 

preceding research, whose learning data had high similarity. 

5. Conclusions
A new drone-detection system was proposed and developed by 

improving and systemizing a preceding study [15] that detected 

drones using the deep learning–based YOLO algorithm. It was 

activated without special sensors or devices using SWIR-camera 

images. The 21,437 drone images, shot based on 30 frames per 

second, were 93.3% accurate overall. Almost no difference in ac-

curacy was recognized with the naked eye between the data with 

drones and the data without drones, as the shooting distances 

were 1.5-2 km. This is likely because they appear very small with 

the camera pixels. 

In future studies, the system accuracy will be improved by 

shooting several drones in various environments and by increas-

ing the learning data. The interface between the deep learning–

based image analyzer and SWIR cameras proposed in this paper 

and other surveillance systems, as well as how to exchange event 

information, will also be studied further. 
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