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Abstract: In this paper, we propose a deep-learning-based defect detection system for the non-destructive quality inspection of castings 

based on X-ray images. Our system comprises a defect classification network and a defect search network and achieves high classifi-

cation performance with limited data by minimizing the overfitting for one type of object. The proposed defect classification network 

determines whether the acquired X-ray image is Defect by using a convolution neural network and outputs the defect probability 

through softmax. Compared to binarized defect classification or defect location tracking, this method of outputting the defect proba-

bility does not require a separate reworking of the training dataset, because the data labeling is the same as the existing quality evalu-

ation task. In addition, to detect the location of the defect causing the defect classification, our proposed defect search network estimates 

the region where the defect is likely to exist through a Grad-CAM based on the feature map of the classification network. The proposed 

network then determines the ROI around each peak of the estimated regions and detects the exact shape and location of the defect 

through boundary detection. It is, therefore, possible to minimize quality control costs through a precise quality analysis of each casting 

product by simultaneously detecting small defects that are easy to ignore because large defects are found in the image. To verify the 

validity of this study, an experiment was conducted by constructing a dataset of actual cast products, and the proposed detection model 

achieved an accuracy of 90%. In addition, by comparing the fully connected network and the SVM-based model, the model improved 

by about 20%, demonstrating that it is possible to detect defects without labeling defect locations. 
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1. Introduction
Product casting is an important technique applied to most de-

veloped products in a wide range of fields, including transporta-

tion and tool production. Quality control of such casting is more 

important in certain areas related directly to safety, and various 

studies on improving such techniques are actively being con-

ducted. Product casting is critical to the level of quality because 

a number of voids, which are empty spaces within an object, are 

generated for reasons such as gases and cooling generated during 

the manufacturing process. Because it is difficult to ascertain the 

presence of such pores in metals, a non-destructive X-ray-based 

inspection method capable of penetrating metal has been widely 

applied. 

An X-ray image consists of brightness data on the size of the 

scanned X-rays transmitted and absorbed by an object. The 

brightness of the pixel is proportional to the attenuation of the 

material, and the information is 2D-imaged at all planes. The res-

olution of such X-ray images depends on the function, part, 

shape, and material properties of each X-ray being inspected. 

High-resolution images can be obtained if the inspection object 

is a low-density material, has a small cross section, and is of a 

simple shape [1]-[5]. However, noises in X-ray images such as 

beam curing and image noise are complex and difficult to solve 

because of the large amplitude. 

For such an X-ray analysis, several studies on simply detecting 

or dividing a porosity have been conducted. A porous division is 
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being actively studied, not only in the field of casting, but also in 

medicine and industrial fields. However, because the properties 

of the materials used in each field are extremely different for each 

process characteristic, there are no unified standards for analysis. 

Therefore, most porosity segmentation and detection systems are 

automated only up to the imaging stage, and the rest of the system 

chooses a semi-automatic method that proceeds based on man-

power. To solve this problem, research has been conducted on 

automated porosity division in various fields. In general, porosity 

division can be applied through an algorithm called a “segmen-

tation recipe” and using metadata for each individual inspection 

object [6]. Du Plessis et al. [3] presented a semi-automated work-

flow for objects manufactured through additive manufacturing. 

In addition, Iassonov et al. [7], Rezaei et al. [8], and Tretiak et 

al. [9] conducted a porosity analysis to develop automated poros-

ity partitioning algorithms in various fields. However, because 

these studies only suggested the possibility of automation, they 

did not reach a practical automated algorithm. 

The significant advancements in machine learning technology 

centered on deep learning have recently enabled the development 

of automated analysis algorithms in various fields. In particular, 

a convolution neural network (CNN) was designed as a layered 

network that learns generalized features by learning the weights 

of convolution filters for image classification [10]-[12]. In a 

CNN-based network, it is easier to learn features with higher-res-

olution images; however, because of a large number of computa-

tions, it is essential to adjust the parameters of the CNN at an 

appropriate scale. U-Net [13] has recently been proposed to ana-

lyze both large and small features in high-resolution images. 

Yamashita et al. [14] presented an overview of a CNN in medical 

images, as well as a case of using machine learning for medical 

XCT segmentation, which improves the accuracy of examina-

tions. However, these networks require labeled datasets to train. 

However, general industrial data have limitations in building a 

dataset through data labeling. 

Therefore, in this paper, we propose a deep-learning-based de-

fect detection system using X-ray images for detection and seg-

mentation with minimal data labeling. Our system comprises a 

defect classification network and a defect search network that 

achieves a high classification performance using limited data by 

minimizing the overfitting for one type of object. The proposed 

defect classification network determines whether the acquired X-

ray image is Defect by using the convolution neural network and 

outputs the defect probability through softmax. Compared to 

binarized defect classification or defect location tracking, this 

method of outputting the probability of the defects does not re-

quire a separate rework for the training dataset because the data 

labeling is the same as in the existing quality evaluation task. In 

addition, to detect the location of the defect, which is the cause 

of defect classification, our proposed defect search network esti-

mates the area where a defect is likely to exist through gradient-

weighted channel activation mapping (Grad-CAM), based on the 

feature map of the classification network. The proposed network 

then determines the ROI around each peak of the estimated re-

gions and detects the exact shape and location of the defect 

through boundary detection. Thus, it is possible to minimize 

quality control costs through a precise quality analysis of each 

casting product by simultaneously detecting small defects that 

are easy to ignore, because large defects are found in the images. 

2. Related Studies

2.1 Contrast Limited Adaptive Histogram Equalization 
Contrast Limited Adaptive Histogram Equalization (CLAHE) 

is a histogram smoothing method that limits the maximum con-

trast and minimum intensity; it is suitable for images with uneven 

contrast. The CLAHE method is based on dividing an image into 

several non-overlapping areas of almost the same size. The sep-

arated grid is divided into a corner area, a boundary area, and an 

inner area according to the characteristics of each. Subsequently, 

gray scale mapping is applied according to each area based on 

the desired clip factor. This CLAHE algorithm is a preprocessing 

method used to check the detailed features of images with uneven 

contrast, such as X-rays. In the case of non-destructive testing 

applied to the industrial field described herein, significant scat-

tering or shielding of X-rays occurs because metal materials are 

examined, and this includes large amounts of noise. Therefore, in 

this study, as CNN information requiring normalized input, the 

image is preprocessed through CLAHE and then input. 

2.2 Visual Description of CNN 
Deep-learning-based networks are highly black box algo-

rithms and have significant difficulties in designing and debug-

ging networks. A recent study on weight map recycling, such as 

transfer learning, proved that the same kernel can be applied to 

similar tasks [15]-[16]. Object detection and recognition are al-

gorithms that fundamentally perform the same and use the same 

feature extraction kernel. In this study, defect determination is 
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achieved and the location of the defect is found through the vis-

ualization of a CNN. Such CNN visualization methods are di-

vided into deconvolution and CAM views. 

A deconvolution view is the most intuitive approach to under-

standing images, and is used to understand the feature expression 

based on the activation of the map. A deconvolution [17] is a re-

verse convolution operation that reverses the trained CNN 

through a structure such as an upsampling layer and reconstructs 

it into a visualization architecture. The visualization result has 

detailed edge, edge, and color features of the lower layer, and the 

higher layer represents important pose transformation, class-spe-

cific transformation, and complex information. 

In addition, the CAM method is of high-resolution and shows 

information of the CNN-based feature extractor through visuali-

zation that can be classified into classes. CAM expresses the lo-

cation of a specific object by class through the probability inten-

sity at the pixel level. In [18], because a CNN is visualized 

through global average pooling, the application is limited; how-

ever, in the Grad-CAM proposed in [19], because the CNN is 

visualized, it can be applied to various networks and its perfor-

mance is improved compared to that of the CAM. In this study, 

Grad-CAM was applied to identify defect information through 

minimal data labeling. 

3. Proposed Method

3.1 Defect Detection Based on Unsupervised Learning 
In this paper, we propose an unsupervised-learning-based de-

fect detection system to identify defects of non-destructive in-

spection targets based on X-ray images.  

Figure 1: Architecture of proposed defect detection system 

Figure 1 shows the overall architecture of the proposed system. 

The proposed defect detection system consists of a CLAHE-

based image preprocessing algorithm, defect detection network, 

and defect region proposal network. The CNN-based image pro-

cessing model applied in the proposed system ignores small 

noises and gradually extracts large features according to the 

depth of the layer. However, X-ray images have a large amount 

of noise at a high scale, such as afterimages and moire effects. 

Therefore, when a CNN-based image processing model is ap-

plied as is, an error is generated due to learning of the afterimage 

as a feature pattern. To solve this problem, the detection system 

proposed in this study reduces the noise level generated on a large 

scale in the X-ray image through the CLAHE algorithm to 

weaken the characteristic pattern of noise and make the shape of 

the defect stand out. Thus, the CNN model can effectively recog-

nize the features and objects of the defect, thereby minimizing 

the problem of overfitting caused by the image captured in the 

local area. 

The image preprocessed through CLAHE is used to determine 

whether it is Defect through a feature extractor composed of a 

CNN and a fully connected classifier. The proposed defect clas-

sification network is designed to be lighter than that of several 

existing classification networks because the existing network lo-

cates the exact defect through a single network and includes a 

defect analysis through a porosity division, which is a defect. 

However, because this system is designed to be separated into 

two stages, i.e., identifying and presenting the location of defects, 

it is extremely efficient compared to the previous approach be-

cause it has the same performance through two relatively light 

networks. 

It is difficult to detect porous defects even with the naked eye 

because X-ray images for industrial non-destructive inspection in 

practice have a limited resolution. Therefore, the reliability of the 

human-dependent data labeling process is limited and non-uni-

form. In order to solve this problem and improve the reliability 

of the detection system, we propose an unsupervised learning-

based defect domain proposal network that detects the location 

of defects based on whether or not an image is Defect. When a 

defect occurs, this network constructs an activation map for each 

class by obtaining the last result of the CNN-based feature ex-

tractor for the class features that are destroyed by the classifier of 

the defect classification network without an independent learning 

process in the Grad-CAM. The activation map is a map with the 

location and intensity of features to be classified by the feature 
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extractor into the corresponding class. The location of this pixel 

matches the location of the actual image, and the larger the size 

is, the more main features and locations used to determine a spe-

cific class. Therefore, by finding the local maxima of this activa-

tion map and extracting the ROI around the region, the region 

with a high probability of a defect is extracted. Through this sys-

tem, it is possible to efficiently detect existing defects through 

minimized data labeling and learning processes. 

3.2 Defect Classification Network 
The proposed defect classification network is configured to be 

smaller than the existing detection network for learning effi-

ciency. 

Figure 2:  Structural diagram of CNN block of proposed Defect 

classification network 

Figure 2 shows the CNN-based block applied to this network. 

The image-based detection network of the deep learning archi-

tecture is mainly a combination of a CNN and a pooling layer, 

and the performance and speed differ depending on the type. In 

this study, we apply a design based on the block of Res-Net 50. 

The left side of Figure 2 is the input block, which is the top net-

work block, which expands the channel of the input image and 

down-samples it through the convolution and pooling layers. 

This minimizes damage to the image features and at the same 

time reduces the resolution of the image, thereby reducing the 

computational load of the subsequent down block. The down 

block consists of two convolutional layers and one pooling layer. 

The first convolution layer reduces the resolution of the input im-

age and expands the channel to preserve the previous features. 

By adjusting the number of strides of the layer to 2, the down 

block is designed to continuously reduce the image such that the 

convolution filter can check the entire image. The design of this 

system can be easily changed to a variable resolution through the 

design of these separate blocks. 

Figure 3: Schematic diagram of the proposed Defect classifica-

tion network 

Figure 3 shows a network designed with input blocks, down 

blocks, and fully connected layers. The proposed defect classifi-

cation network consists of one input block and three down 

blocks, compresses the input preprocessed image by 256-fold, 

and finally reduces it to a feature map. These feature maps are 

serialized, classified through a fully connected layer, and classi-

fied into two classes: good and poor. Compared to binary classi-

fication, this method is easier to debug through probabilistic ele-

ments, and it will be easy to add new defects in the future. 

4. Experiment and results

4.1 Details of experimental X-ray data 
To learn and verify the validity of the defect detection system 

proposed in this paper, we use a dataset constructed from an X-

ray image of an actual product. The dataset is organized by clas-

sifying normal and Defect products based on the images col-

lected during the entire investigation of the product being pro-

duced. Table 1 shows the composition and details of this dataset.  

4.2 Quantitative evaluation 
In the experiment on the proposed network, training was con-

ducted by separating 80% of the training data and 20% of the 
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verification data from the dataset, the results of which are shown 

in Figure 4.  

Table 1: Detailed parameters of the dataset 

Parameter Value 
Total number of images 7027 
Number of good images 5467 

Number of not good images 1560 
Color type Grayscale 

Image resolution 1268 * 1012 

Figure 4:  Accuracy according to epoch of the proposed defect 

detection network 

Figure 5: Confusion matrix of the detection results 

The x-axis of Figure 4 refers to the accuracy of the data, and 

the y-axis refers to the epoch of the experiment. The experimental 

results start at 70%, which is the ratio of normal and Defect data 

in the first epoch, and increases more than 90% in the final 100th 

epoch. In X-ray images, defects can occur in all areas and their 

characteristics also vary; thus, unlike general object classifica-

tion datasets, the diversity of the features is high, and training is 

difficult. Unlike the deep learning training results that converge 

in a logarithmic form, which is a general training result, the 

results in Figure 4 show the training results linearly. Therefore, 

if the number and clarity of the dataset are enhanced, better re-

sults can be obtained. 

Defect detection, the goal of this study, is an important task for 

evaluating the quality of a product, and beyond accurately clas-

sifying good and poor, erroneous detection between such states 

should be minimized. The confusion matrix and F1 score were 

therefore evaluated in this study. Figure 5 shows the confusion 

matrix of the detection results. Here, the vertical axis indicates 

normality and failure of the actual detection results, and the hor-

izontal axis indicates normality and failure of the predicted de-

tection results. In the confusion matrix shown in Figure 5, the 

results in the diagonal direction are classified correctly, and the 

accuracy is 90%. The number of actual defects in the lower left 

corner of Figure 5, classified as normal, is approximately twice 

as many as in the opposite case shown in the upper-right corner. 

This is due to a data imbalance that has three-times the amounts 

of poor data and normal data. It can, therefore, be confirmed that 

the results of this study are stable. 

Table 2: Detection results 

Metrix Ours MLP SVM 
Accuracy 90.25 % 77.28 % 71.58 % 
Error rate 9.75 % 22.72 % 29.42 % 
Precision 0.8054 0.7828 0.7828 

Recall 0.7399 0.8949 0.8635 
F1 score 0.7713 0.8351 0.8058 

Although studies on defect detection algorithms based on X-

ray images are diverse, a unified analysis is difficult because 

there is no dataset. Therefore, to prove the validity of the model 

proposed in this paper, a fully connected network and a CNN and 

SVM were compared with the existing classification modelDe-

fect. Table 2 analyzes the results through the F1 score, accuracy, 

error rate, precision, and recall. The accuracy was approximately 

90% and the error rate was approximately 10%, demonstrating 

that a real defect detection was possible with high accuracy. The 

MLP model showed a significant difference in performance at 

77% and the SVM at 71%. In addition, the general automated 

quality inspection solution must not only accurately detect, but 

also analyze, the problem of falsely detecting an actual Defect 

product. To this end, we analyzed the accuracy, precision, and 

reproducibility. In addition, because the precision and reproduc-

ibility are inversely proportional to each other, the F1 score is 

used to analyze these two indicators together. The accuracy of the 

detection network proposed in this paper is 0.80, the 
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reproducibility is 0.74, and the F1 score is 0.77, which is lower 

than that of the comparative model. However, this occurred be-

cause the experimental data had a higher normal rate than the 

Defect data, and the stability of the proposed model can be veri-

fied through a high precision score. 

4.3 Qualitative evaluation 
The results of determining the monitoring system function lo-

cation of the defect are difficult to quantitatively analyze because 

the location dataset is not configured. Therefore, in this study, the 

results are analyzed through actual data for a qualitative evalua-

tion of the results. If the result of the proposed detection network 

is output through Grad-CAM, the activation map can be found in 

the actual image according to the strength of the classification. 

Figure 6 shows that the location of the defect in the lower left 

corner is accurately expressed by combining the activation map 

and the actual image, and a high activation occurs in the defect 

area. 

Figure 6: Grad-CAM activation map and result of combined im-

age  

Because the result of Grad-CAM occurs as a region without 

outputting a single value like probability, the local maxima, 

which is the maximum value of the region, must be detected. Fig-

ure 7 shows the result of detecting the ROI when focusing on the 

local maxima detected through the proposed algorithm. In Fig-

ure 7, there is a white defect inside the red square. Thus, it can 

be confirmed that the system proposed in this paper properly de-

tects defects. 

Figure 7: ROI of defects detected through the proposed system 

5. Conclusion
In this paper, to improve the efficiency in the quality control 

of product castings, a network that locates and classifies defects, 

is proposed. The proposed network can efficiently process X-ray 

images based on a CNN, and does not require metadata such as 

location information, thus minimizing the cost of building a da-

taset. Training and experiments were conducted based on the X-

ray image data of actual cast products, and the results showed an 

excellent accuracy of over 90%. In the future. Based on this 

study, we plan to study an algorithm that automatically clusters 

optimized datasets. 
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