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Abstract: The underwater images obtained using optical sensors, such as cameras, have low visibility and color distortion due to 

underwater environments. To enhance the visibility and color of underwater images, autoencoder-based convolutional neural networks 

are used recently; however, a basic autoencoder is not effective in color distortion and makes the result images noisy. In this study, we 

propose an autoencoder with skip-connection called symmetrical autoencoder (SAE) to improve the visibility and color distortion of 

underwater images. The proposal of this study is twofold: (i) to symmetrically add skip-connections that connect encoders to decoders 

throughout the network for reconstructing ability of decoders and (ii) to synthesize underwater datasets using an underwater image 

formation model to train the autoencoder effectively. Through the comparison with other approaches, we show that the proposed 

autoencoder outperforms them in PSRN, SSIM, and color difference for test datasets. In addition, the proposed autoencoder can well 

generalize the actual underwater images. 
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1. Introduction 
As interest in marine resources has recently increased, a lot of 

development of underwater robots is underway to research and 

explore the underwater environment. Underwater robots are 

equipped with various sensors to check the underwater environ-

ment. Among them, the optical sensor is one of the basic sensors 

used to intuitively check the surrounding environment of the ro-

bot. Figure 1 shows the image acquisition processing in under-

water. It is difficult to capture underwater images due to turbidity 

on organisms such as plankton and inorganic precipitate. In ad-

dition, light scattering and absorption in water cause color distor-

tion that varies depending on the wavelength of the light. Fur-

thermore, the background light makes the underwater images 

hazy. To improve the visibility and color of underwater images 

using fundamental image enhancement methods based on image 

formation model (IFM), the convolutional neural networks 

(CNNs) are mainly used. 

Fundamental image enhancement methods improve underwa-

ter images by applying gamma correction for color correction [1], 

histogram equalization (HE) for contrast enhancement [2], and 

etc. Although HE produces high-contrast images by evenly dis-

tributing the pixel values of the image, its results lose the original 

contrast. To overcome the weakness of HE, the contrast-limited 

adaptive histogram equalization (CLAHE) divides images into 

several patches and performs adaptive HE by considering each 

patch’s original contrast [3]. However, it is difficult to improve 

low visibility and color distortion of the underwater environment 

using single fundamental image enhancement method.  
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Figure 1: Image acquisition processing in underwater 
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Thus, fundamental image enhancement methods are used in 

series or parallel. Ancuti et al. proposed a method called image 

fusion that combines three fundamental image enhancement 

methods, white balancing, gamma correction, and sharpening, to 

enhance color and visibility [4]. However, image fusion is not 

effective in improving color cast or over-enhanced red color due 

to white balancing.  

The methods based on IFM are used to obtain the radiance of 

images without distortion. The dark channel prior (DCP) uses 

IMF to obtain haze-free images [5]. The DCP-based methods are 

frequently used for underwater images because the underwater 

images also have haze. Underwater DCP (UDCP) improves DCP 

by considering underwater environments in which the amount of 

transmission of red light is less than blue and green light [6]. 

CNN, one of the deep learning methods used for image pro-

cessing, is actively used for underwater image enhancements. It 

is used to get additional information for IMF [7] or to reconstruct 

enhanced images directly. One of the CNN network models, an 

autoencoder (AE), is mainly used for image enhancement. Basic 

AEs for colorizing was used for color restoration of outdoor im-

ages [8]. A basic AE, however, is not effective for underwater 

images that have both color distortion and low visibility. 

In this study, we propose an autoencoder with skip-connection 

called symmetrical autoencoder (SAE) to improve the visibility 

and color distortion of underwater images. The proposal of this 

study is twofold: (1) to symmetrically add skip-connections that 

connect encoders to decoders throughout the network for recon-

structing ability of decoders and (ii) to synthesize underwater da-

tasets using the underwater image formation model to train the 

autoencoder effectively.  

Underwater datasets for training are made of indoor image da-

tasets by means of distance information and underwater image 

formation models that are considered light scattering and absorp-

tion. To demonstrate the performance of the proposed SAE, we 

compare it with other approaches, such as CLAHE, Image fusion, 

DCP, UDCP, Colorizing AE, using test datasets and actual under-

water images. We show that the SAE outperforms them not only 

in full-reference metrics such as peak signal to noise ratio 

(PSNR), structural similarity (SSIM), and color difference, but 

also in terms of visibility. 

This paper is organized as follows: Section 2 introduces the 

proposed architecture of the SAE. Section 3 presents the under-

water dataset synthesis for training, and our experimental results. 

Finally, we conclude this paper in Section 4. 

2. Underwater image enhancement using SAE
2.1 SAE Architecture 

The architecture of SAE is shown in Figure 2. It consists of 

Figure 2: Proposed architecture called symmetrical autoencoder 
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encoders, residual blocks, and decoders. The encoders consist of 

four convolution layers and obtain the compressed feature map 

of an input image using two or more strides.  The residual blocks 

are made up of four residual blocks, of which each contains two 

convolution layers with a skip-connection. The skip-connection 

in residual block prevents gradients from being zero or near-zero 

when updating kernel coefficients. In other words, the problem 

of gradient vanishing can be avoided. The decoders are com-

posed of four transposed convolution layers, the same as the en-

coders, and reconstruct the compressed feature map to the en-

hanced image with R-G-B channel. 

In addition, to solve the complex problems of underwater im-

ages, we try to increase the depth of the decoders and the encod-

ers. However, the more the encoders compress, the smaller the 

size of the feature map for the input image is. Accordingly, the 

shape and details of the original images are lost [9], and the re-

constructed images contain a lot of noise and color distortion. To 

overcome this problem, we add skip-connections to send the fea-

ture map of the encoders to the encoders directly. 

Kernel size is one of important parameters in CNN. The 

smaller the size of kernel, the more effective the preserving de-

tails (e.g., edge information [10]) of the original image and the 

lower the computational cost of network. However, the extreme 

kernel size of 1×1 extracts local information from an image with-

out considering spatial relationship of pixel. Therefore, we set the 

size of kernel to 3×3 for both considering the spatial relationship 

of pixel and reducing computational cost. The number of kernel 

is set to 128. Batch normalization (BN) and rectified logical unit 

(ReLU) is processed at each layer, except for the last layer. In the 

last layer, we use sigmoid function so that the result image has a 

pixel value of 0 to 1. 

2.2 Updating Kernel Coefficient 

We train SAE using underwater datasets consists of underwa-

ter images and corresponding clean images. The loss function of 

SAE is mean squared error (MSE) expressed in Equation (1): 

  = ∑  (,) (,)∈{, , }    (1) 

where  (, )  and  (, )  are the result image recon-

structed by SAE and the clean image in the underwater datasets, 

respectively.  and  are the locations of current pixel in an image.  is the total number of pixels in the image. To update kernel 

coefficient in convolution, we use Adam optimizer in this study. 

3. Experiments and Results

3.1 Synthesizing Training Datasets 

To train the proposed SAE, we need pairs of an underwater 

image and its corresponding clean image. However, it is difficult 

to obtain these pairs in real underwater environments. To get the 

pairs effectively, we add noise to NYU datasets using the under-

water image formation model (UIFM) [11] that is defined as 

Equation (2): 

 (, ) = (, ) (, )(, ) + 1 − (, )= ()(,) (, )()(,) +1 − ()(,)   (2) 

where λ  is the element of { ,  ,  },  and   and   are 

the locations of current pixel in an image.  (⋅) is the synthe-

sized underwater image. (⋅) is the depth between the water sur-

face and objects. (⋅) is color distortion that is affected by (⋅). α(⋅) is the light absorption coefficient. E (⋅) is the no-distorted 

image substituted into NYU R-G-B images. (⋅) is the amount 

of light that is reflected from the object to the optical sensor. It is 

affected by the distance from the scene to the optical equipment, (⋅),and light scattering coefficient, (⋅). (⋅) is substituted into 

NYU distance information.  

To express distortions such as real underwater images, Jerlov 

Table 1: Light scattering and absorption coefficient according to each water type in Jerlov water types. The water types from I to 

III are oceanic types. The unit of () and () is m 

Wavelength 

(nm) 

I IA IB II III () () () () () () () () () () 

650 (Red) 0.334 0.0009 0.334 0.0023 0.334 0.393 0.334 0.27 0.336 0.74 

525 (Blue) 0.046 0.0021 0.047 0.0040 0.0047 0.078 0.047 0.387 0.051 1.06 

450 (Green) 0.018 0.0038 0.022 0.0063 0.024 0.062 0.024 0.504 0.039 1.38 
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light coefficients are substituted into (⋅) and (⋅). It is esti-

mated through the transmittance of light measured in various 

types of ocean and coastal water. Although Jerlov offers five 

types of coastal and five types of ocean water of light coeffi-

cients, we consider only ocean water in this study because images 

taken in coastal water are very turbid and have severe color dis-

tortion, that is, there is limited information about scene. To cap-

ture the information of image in coastal environments, additional 

hardware devices are required. Table 1 shows five types of ocean 

water of light coefficients used in this study. Other parameters 

are set to (⋅) ∈ {0.5, 15} ,  ∈ {0.2, 0.5} ,  ∈{0.5, 0.75}, and  ∈ {0.5, 0.8} . Consequently, we generate 

10,000 synthetic training datasets randomly mixed with five 

types of ocean water. Figure 3 shows the samples of training da-

tasets used to train SAE. 

NYU datasets consist of 1,449 R-G-B images taken indoor and 

include distance information in each image. We randomly draw 

1,000 images from NYU datasets for training datasets and the 

other for test datasets. 

3.2 Performance Evaluation 
We evaluate CLAHE, image fusion, DCP, UDCP, Colorizing 

AE, and SAE for test datasets. SAE and Colorizing AE run on 

3.7 GHz CPU, 16G RAM, and Nvidia Geforce RTX 2070 

SUPER GPUs using python and pytorch framework. Training pa-

rameters are the learning rate of 0.0005 and the batch size of 8. 

SAE and Colorizing AE are trained using our training datasets 

for 50 epochs. Each 449 NYU dataset for the test dataset is made 

of five types of underwater samples, as shown in Figure 3. To 

quantitatively evaluate the performance of each method, we use 

full-reference metrics such as PSNR, SSIM, and color difference 

of the R-G-B color channel. Color difference is computed as 

Equation (3): 

   = ∑  (,) (,)∈{, , }    (3) 

where  (⋅) and  (⋅) are the result image and the clean 

image in test datasets, respectively.   and   are the locations of 

current pixel in the image.  is the total number of pixels in the 

image. Figure 4 shows the test dataset samples and the result im-

ages generated using each method. Table 2 shows the mean val-

ues of PSNR, SSIM, and color difference of each method for all 

test datasets. The closer the result images to the original, the 

higher the PSNR and SSIM, and the lower the color difference. 

As shown in Figure 4, although CLAHE enhances the contrast, 

but it does not correct bluish and greenish tone. Image fusion is 

effective in visibility enhancement, but it is not effective in color 

correction. In addition, some images of fusion results of test da-

tasets have artificial noise, as shown in the column IA of Figure 

4. DCP darkens the bluish and greenish tone to create a dark im-

age. Although UDCP compensates more for the red channel, the 

result shows a similar pattern as DCP. Colorizing AE is relatively 

effective for color correction than another methods, but it has 

noise as shown in columns II and III of Figure 4. The proposed 

SAE shows best performance for both actual result images and 

metrics. Additionally, Figure 5 shows the result images of the 

actual underwater images obtained from Google. 

4. Conclusion
We proposed SAE that is a CNN-based autoencoder with 

skip-connection throughout the network to enhance underwa-

ter images. To train SAE, we use synthesized underwater images 

Table 2: Mean values of PSNR, SSIM, and color difference of each method about all test datasets 

CLAHE Image fusion DCP UDCP Coloring AE Proposed 
PSNR 12.5092 14.0734 10.2442 10.5885 17.4380 22.0598 
SSIM 0.5920 0.7199 0.4320 0.4726 0.8263 0.8797 

Color diff 0.3989 0.3525 0.5074 0.4760 0.1902 0.1404 

Figure 3: Samples of training sets using UIFM and NYU datasets 
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datasets that are mage out of NYU datasets using UIFM and 

Jerlov light coefficients to add actual color distortion and 

haze to underwater image datasets. Although SAE showed 

outstanding effectiveness visually and quantitatively in test 

datasets, the results of actual underwater images were less ef-

fective with respect to color correction and contrast enhance-

ment than test datasets. Therefore, in future study, we will 

need to train the model by synthesizing a training dataset that 

explains the actual underwater images well. 
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