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Abstract: Research on smart ship is becoming active. In smart ships, forecasting power demand is important. Through the power 

forecast, the power supply can be flexibly improved to maximize the power generation efficiency. Energy reduction can be achieved 

through increased efficiency. In this paper, we construct a ship power demand prediction model using XGBoost (eXtream Gradient 

Boost) and LGBM (Light Gradient Boosting Model). The hyperparameters of the boosting algorithm improve the accuracy of the 

prediction model and prevent overfitting. In addition, the verification functions of XGBoost and LGBM were constructed and 

verified, and the model suitability was compared. The verification function used Root Mean Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE) and Mean Absolute Scaled Error (MASE). The XGBoost model showed similar performance compared to 

LGBM, but was slow in computation speed. In terms of operation speed, LGBM is recommended when constructing a power demand 

prediction model using boosting techniques in smart ships. 
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1. Introduction
A smart ship refers to a ship in which all the devices and 

conditions of the ship can be checked on land by using IoT, big 

data, and artificial intelligence, and also a ship with the 

capability of diagnosing or predicting device failure, 

autonomous operation, and eco-friendly operation. Recently, 

research on smart ships has been actively underway. 

Smart ships should be able to predict power and change a 

supply method through big data. The supply method can be 

combined by using the number of parallel generators and 

batteries. We can improve the operating efficiency of generators 

through the combined method. We can reduce fuel consumption 

through the improved efficiency, which will affect the economy 

and environmental protection. Therefore, the accuracy of power 

prediction is critical. 

The power devices used in a ship is limited, and the devices 

used are set in advance depending on the ship’s operation mode. 

The shipyard analyzes power loads by using this. However, 

since power loads depend on the operation and situation of a 

ship, the method adopted by the shipyard is not accurate. 

In this paper, we created power demand prediction models 

for actual measurement data of a ship using eXtreme Gradient 

Boost (XGBoost) and Light Gradient Boosting Model (LGBM), 

verified the models using Squared Root (SQRT), Mean 

Absolute Percentage Error (MAPE), and Mean Absolute 

Squared Error (MASE). 

XGBoost is one of the ensemble algorithms which apply the 

gradient boosting technique to the tree model that creates the 

more powerful classifier by sequentially improving the weak 

classifier. It is very accurate thanks to the use of the boosting 

technique, and its calculation speed is fast thanks to parallel 

calculation. 

LGBM is an algorithm for improving low efficiency and 

scalability when the data of the high dimensional variable of the 

conventional gradient boosting technique is large, and uses 

Gradient-based One-Side Sampling (GOSS) and a new 

algorithm called Exclusive Feature Bundling (EFB). 

In this paper, we propose an optimal model by using a ship 

power demand prediction method through XGBoost and LGBM 

techniques and adjusting hyperparameters for each technique. In 

addition, we propose a fast prediction model relative to 

performance by measuring the prediction time of each 
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prediction model. We use data measured at an interval of 10 

minutes for one year from 2014.11 to 2015.12 to train the 

prediction models. 

2. Ship data and algorithm

2.1 Ship specifications and data 
The target ship is a 6,800TEU container, which is driven by 

one 69MW MAN B&W diesel engine and consists of four 

3,000kW generators. The specifications of the target ship are 

shown in Table 1. 

Table 1: Specification of target ship 

kind of Ship container
length over all 299m

Extreme Breadth 40m
Depth 13.5m

output of Main Engine 68,520kW
output of Generator Engine 3,000kW

Maximum Speed 25Knot
TEU 6732TEU

We used data measured at an interval of 10 minutes from 

2014.11 to 2015.12. The data used is shown in Table 2. 

Table 2: Acquisition data list 

No. Data Unit
1 Wind Speed m/s
2 Wind Angle degree
3 Water Speed m/s
4 Main Engine RPM RPM
5 Ship Speed knot
6 Ship State -
7 Total Load kW

The power consumption of a ship depends on the operation 

mode and environment of the ship. The operation mode of the 

ship is divided into voyage, entry and departure, and anchoring, 

and the equipment used in the ship differs according to each 

operation mode. For example, a large amount of power is 

consumed with the use of the bow thruster and winch for entry, 

and departure. Therefore, in this study, we divide the 

measurement data into the integer data of 0~2 depending on the 

operation mode of the ship. In addition, the external 

environment of the ship affects the main engine and how each 

device operates. This is because the parallel operation of 

equipment or cascade control under low loads is utilized as the 

environment outside the ship changes. In this study, we use the 

values such as the wind speed, wind angle, and water speed in 

Table 2 as the external environmental data that is used as 

training data. Since the use of the main engine affects the use of 

the air compressor and auxiliary blower, this can represent the 

load of the main engine by utilizing the vessel speed and the 

Revolution Per Minute (RPM) of a main engine. Therefore, we 

use the operation mode, external environment, and the load of 

main engine of the ship as the XGBoost and LGBM models. 

2.2 XGBoost 
XGBoost applies the boosting technique to the decision tree 

model. The boosting technique is an algorithm that produces 

robust models with the capability of complex prediction by 

combining weak models suitable for simple classification. After 

training the given data through the weak classifier, we can 

reduce errors by training the errors present in the trained result 

through another weak classifier. 

XGBoost gives high scores to the tree model of high 

importance by assigning different weights to each model when 

integrating the models through the boosting technique. The 

weight of the previous model depends on the current error. The 

objective function for training consists of the loss function and 

normalization term between the true and predicted values, and 

the model is trained by obtaining the weight that minimizes this 

objective function. 

2.3 LGBM 
LGBM is an algorithm for improving low efficiency and 

scalability when the data of the high dimensional variable of the 

conventional gradient boosting technique is large, and uses 

GOSS and a new algorithm called EFB. GOSS takes 

configuration that data entities with large gradients can play an 

essential role in calculating information acquisition by 

excluding data with small gradients among data entities. 

Therefore, GOSS can estimate information acquisition very 

accurately even with a small amount of data. EFB binds 

mutually exclusive variables through the greedy algorithm to 

reduce the number of variables. Therefore, it can effectively 

reduce the number of variables without significantly 

compromising the accuracy of split point determination. 

3. Hyperparameter

3.1 Hyperparameter 
A hyperparameter usually refers to a variable that is directly 

tuned by the user when training any arbitrary model in machine 
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learning. The optimized hyperparameter will change depending 

on the given data. Therefore, it can be determined by experience 

or confirmed through various search methods. 

Table 3: Important Hyper parameter of each model 

XGBoost LGBM
colsample_bytree colsample_bytree

subsample subsample
gamma min_split_gain

max_depth max_depth
n_estimators n_estimators

- num_leaves

Table 3 shows the major hyperparameters by model. In this 

study, we optimize the prediction models by adjusting the key 

hyperparameters in Table 3. 

The following is the description of the hyperparameters in 

Table 3. 

‣ colsample_bytree: When training a tree, we do not use all

training data, but only some of the data randomly extracted

based on the column. This improves performance by

reducing overfitting.

‣ subsample: When training a tree, we do not use all training

data, but only some of the data randomly extracted based on

the row. This improves performance by reducing overfitting.

‣ max_depth: We specify the maximum tree depth in the process

of forming the tree model. A small value causes underfitting 

while a large one causes overfitting. 

‣ n_estimators: It refers to the number of trees. Since increasing

the value adds more trees to the ensemble, the complexity of 

the model increases. Therefore, the probability of correcting 

errors in training goes up. However, the large value means 

more memory and longer training time. 

‣ gamma: It is a hyperparameter used for XGBoost, which

limits the complexity of the tree model. If the value is large,

the tree model does not create many leaf nodes easily.

‣ min_split_gain: It is a hyperparameter used for LGBM, and

plays the same role as the gamma of XGBoost.

‣ num_leaves: It is a hyperparameter used in LGBM. It refers to

the number of leaves of the entire tree, and is the main 

parameter that limits the complexity of the tree model. The 

large value improves accuracy but can lead to overfitting. 

3.2 The optimization method of hyperparameters 
Hyperparameters are used to enhance prediction models, and 

is a variable that must be set directly by the user. The 

hyperparameters are not theoretically determined but must be 

set empirically. Finding optimal hyperparameter is essential for 

building high-performance prediction models. 

There are three widely-known optimization methods of 

hyperparameters. That is, grid search, random search, and 

Bayesian optimization are typical methods. In this paper, we 

optimize hyperparameters using the grid search. 

The grid search is a method of dividing hyperparameters into 

grids and then checking the model performance for all grid 

points. When searching hyperparameters in a grid form, a 

relatively even and global search is possible. However, if the 

gap is too tight or the number of hyperparameters increases, 

there is a drawback that the search time increases. 

3.3 Optimization of hyperparameters of the XGBoost model 
In this study, we use the grid search for hyperparameter 

optimization. To optimize hyperparameters, it is important to 

adjust the variables in Table 3 in order. We adjust variables in 

the order of colsample_bytree, subsample, gamma, max_depth, 

n_estimators. After adjusting the variables, we select the 

variable with the smallest Root Mean Square Error (RMSE). 

3.3.1 Validation function 

In this paper, we use the k-fold cross-validation provided by the 

scikit-learn library to verify the hyperparameter values. Cross-

validation randomly divides the training set into k subnets called a 

fold, and trains and evaluates the decision tree model by k times. 

Each time we select a different fold and used it for evaluation, and 

use the remaining k-1 folds for training. After validation, k 

evaluation scores are derived. In this paper, we configure the k 

evaluation scores to derive RMSE. 

3.3.2 colsample_bytree, subsample 

Of hyperparameters, colsample_bytree and subsample are used 

to prevent overfitting. They are initially set to 1. It the value is large, 

RMSE becomes small but can be overfitting. For the ensemble 

effect, after setting the two hyperparameters to 0.7 and verifying 

RMSE, we found that RMSE was 0.1102118. 

3.3.3 gamma adjustment 

gamma limits the complexity of the tree model, and is initially 

set to 0. While changing the gamma value from 0.4~0.8 by 0.1 with 

the colsample_bytree and subsample values fixed to 0.7, we verify 

RMSE using the validation function. Figure 1 shows the validation 

results according to the change of the gamma value. The results 

show that RMSE was the lowest with 0.10986 at the gamma value 

of 0.7. 

3.3.4 max_depth 

max_depth specifies the maximum tree depth, and is initially set 

to -1. While changing the max_depth value from 5~9 by 1 with the 
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colsample_bytree, subsample and gamma values fixed to 0.7, we 

verify RMSE using the validation function. Figure 2 shows the 

validation results according to the change of the max_depth value. 

The results show that RMSE was the lowest with 0.1095133 at the 

max_depth value of 8. 

Figure 1: score of gamma in XGBoost 

Figure 2: score of max_depth in XGBoost 

Figure 3: score of n_estimators in XGBoost 

3.3.5 n_estimators 

n_estimators refers to the number of trees, and is initially set 

to 100. While changing the n_estimators value from 95~99 by 1 

with the colsample_bytree, subsample and gamma values fixed 

to 0.7 and the max_depth value to 8, we verify RMSE using the 

validation function. Figure 3 shows the validation results 

according to the change of the n_estimators value. The results 

show that RMSE was the lowest with 0.1094432 at the 

n_estimators value of 97. 

3.4 Optimization of hyperparameters of the LGBM 

model 
LGBM also uses the grid search method just like the 

optimization of XGBoost. colsample_bytree, subsample, 

max_depth, and n_estimators are the same as XGBoost but 

min_split_gain and num_leaves are different. Thus, the grid 

search order of LGBM is different from that of XGBoost. The 

variable optimization order of LGBM is colsample_bytree, 

subsample, min_split_gain, max_depth, n_estimators, and 

num_leaves. Just like XGBoost, the validation function used for 

optimizing variables uses the k-fold cross-validation provided 

by the scikit-learn library. 

3.4.1 colsample_bytree, subsample 

Of hyperparameters, colsample_bytree and subsample are used 

to prevent overfitting. They are initially set to 1. For the ensemble 

effect, we use 0.7 that was used in XGBoost. The results of RMSE 

using the verification function was 0.1118904 after setting them to 

0.7.  

Figure 4: score of min_split_gain in LGBM 

3.4.2 min_split_gain 

min_split_gain plays the same role as the gamma of XGBoost, 

and limits the complexity of the tree model. It is initially set to 0. 

While changing the min_split_gain value with the 

colsample_bytree and subsample values fixed to 0.7, we verify 

RMSE. Figure 4 shows the results of the validation function 

according to the change of the min_split_gain value. The results 

show that RMSE was the lowest with 0.1096191 at the 

min_split_gain value of 0.8. 
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3.4.3 num_leaves 

num_leaves adjusts the number of leaves in the entire tree, and 

limits the complexity of the tree model. It is initially set to 31. 

While changing the num_leaves value from 7~11 by 1 with the 

colsample_bytree and subsample values fixed to 0.7 and the 

min_split_gain value to 0.8, we verify RMSE. Figure 5 shows the 

validation function results according to the change of the 

num_leaves value. The results show that RMSE was the lowest 

with 0.1095569 at the num_leaves value of 9. 

Figure 5: score of num_leaves in LGBM 

Figure 6: score of n_estimators in LGBM 

3.4.4 n_estimators 

n_estimators refers to the number of trees, and is initially set to 

100. While changing the n_estimators value with the 

colsample_bytree, subsample values fixed to 0.7, the min_split 

_gain value to 0.8, and the num_leaves value to 9, we verify RMSE 

using the validation function. Figure 6 shows the validation 

function results according to the change of the n_estimators value. 

The results show that RMSE was the constant with 0.1095569. 

Therefore, we use the initial setting value of 100. 

3.4.5 max_depth 

max_depth specifies the maximum tree depth, and is initially set 

to -1. While changing the max_depth value from 1~5 by 1 with the 

colsample_bytree and subsample values fixed to 0.7, the min_split 

_gain to 0.8, the num_leaves to 9, and the n_estimators to 100, we 

verify RMSE using the validation function. Figure 7 shows the 

validation function results according to the change of the 

max_depth value. The results show that RMSE was the lowest with 

0.1093323 at the max_depth value of 4. 

4. The analysis and evaluation of ship power

demand prediction 

4.1 Validation method 
To validate the models with optimized hyperparameters, we use 

RMSE that represents the difference between the predicted and 

actual values of the models, MAPE that can solve the drawbacks of 

size-dependent errors, and MASE that can represent the difference 

between the predicted and actual values as the mean variation. 

Figure 7: score of max_depth in LGBM 
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In Equation (1), 𝑦𝑦𝚤𝚤�  refers to a predicted value, 𝑦𝑦𝑖𝑖  to an actual 

value, and  𝑛𝑛 to the number of data. 

In Equation (2), 𝐹𝐹𝑡𝑡 refers to a predicted value, 𝑀𝑀𝑡𝑡 to an actual 

value, and 𝑛𝑛 to the number of data. 

In Equation (3),  𝑒𝑒𝑗𝑗  refers to the  𝑗𝑗𝑡𝑡ℎ error value, 𝐽𝐽 to the number 

of predictions, 𝑌𝑌𝑡𝑡 to an actual value, and 𝑇𝑇 to the number of data. 

Furthermore, in order to increase the reliability of the model, we 

(3) 
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configure it to verify the accuracy of the model according to the 

amount of the training data by changing the amount of the training 

data to 20%, 40%, 60%, 80%. 

4.2 Model evaluation 

4.2.1 LGBM 

We can confirm that it shows high performance with RMSE 

showing 0.1 on average, MASE 0.07, and MAPE 1. 

Figure 8: Result of LGBM performance evaluation 

4.2.2 XGBoost 

We can confirm that it shows high performance with RMSE 

showing 0.1 on average, MASE 0.06, and MAPE 0.9. 

Figure 9: Result of XGBoost performance evaluation 

Figure 10: Taken time for forecast each model 

4.2.3 Prediction time by model 

We compare the prediction time of LGBM and XGBoost by 

training data. The number of training data consists of 20%, 40%, 

60%, 80% of the total data. Figure 10 shows the prediction time by 

training data. 

In Figure 10, the left side represents the values of XGBoost and 

the right side does the values of LGBM. XGBoost took 0.6183 

seconds on average and LGBM did 0.0444 seconds on average. 

This means approximately 14 times the difference in the calculation 

speed between them. 

Figure 11: Comparison of data between real and predicted val-

ues (XGBoost) 

4.3 Comparison of prediction models 
Figure 11 and 12 show graphs comparing the training results 

using XGBoost and LGBM with the actual power data, 

respectively. As shown in the graphs and the evaluation of the 

models described in Section 4.2, the errors of the two models are 

not significantly different. 

Figure 12: Comparison of data between real and predicted values 

(LGBM) 

5. Conclusion
In this paper, we propose an actual ship power prediction method 
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using XGBoost and LGBM models. We optimized the 

hyperparameters of the XGBoost and LGBM models using the grid 

search method by training them using the measurement values of 

the operation mode and external environment of a ship as input 

variables. We validated the accuracy of the models according to the 

optimization of hyperparameters, and also compared the calculation 

speed according to the number of data. In terms of accuracy, there 

is not much difference between XGBoost and LGBM. However, 

LGBM is 14 times faster than XGBoost in terms of computation 

speed. Therefore, we suggest using LGBM as a prediction model. 
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