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Abstract: This study investigates the unscented Kalman filter with compensated covariances for the sensorless speed control of a 

permanent magnet synchronous motor. The unscented Kalman filter features a direct transformation process involving unscented 

transformation for removing the linearization process error that may occur in the extended Kalman filter. However, the Kalman filter 

should consider the covariance values for the system and measurement noises, and it is challenging to compute appropriate covariance 

values for the system and measurement noises in the design process. The covariance values are usually obtained from experience or by 

the trial-and-error method in the sensorless speed control of a permanent magnet synchronous motor. However, this process may be 

incorrect. This paper proposes an unscented Kalman filter with a fuzzy tuner for compensating covariance values in the sensorless 

speed control of a permanent magnet synchronous motor.  
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1. Introduction 
The vector control of a permanent magnet synchronous motor 

allows for high-performance operation and control, and it is 

widely used in many fields, including industrial uses. Speed and 

position information are required to perform vector control of a 

permanent magnet synchronous motor. However, position 

detectors require additional space for installation and adds to the 

cost of the motor. Moreover, the detector’s reliability may be 

reduced by the surrounding operating environment. Therefore, 

researchers are studying several sensorless algorithms that allow 

for speed and position detectors to be omitted [1]-[4]. Among 

these sensorless algorithms, a method that uses an extended 

Kalman filter is known for being robust against noise [5]-[9]. The 

extended Kalman filter observer estimates state variables through 

a Kalman gain and recursive state values. However, compared to 

other methods, the extended Kalman filter uses a complex 

algorithm, and it ignores higher-order terms in the linearization 

process that uses a Jacobian matrix. As such, a margin of error 

occurs between its estimates and actual systems. An unscented 

Kalman filter overcomes this linearization problem by using an 

unscented transformation rather than a linearization process. As 

such, it shows a marked difference from the extended Kalman 

filter, and it is currently the subject of a great deal of research [10]-

[15]. The covariance matrix values for the systems and noise that 

are considered by the Kalman filter are described as Gaussian 

white noise. In most cases, these values are found through 

experience or trial and error, which is challenging. This paper 

proposes and verifies the validity of a new sensor-less speed 

control method for permanent magnet synchronous motors that 

use an unscented Kalman filter, which compensates the 

covariance using fuzzy tuners.  
 

2. Mathematical Model of Permanent Magnet 

Synchronous Motor 
The permanent magnet synchronous motor used in this study 

is cylinder-shaped. Figure 1 shows an equivalent model of the 

permanent magnet synchronous motor [1][2]. 
 

 
Figure 1: The equivalent model of the permanent magnet 

synchronous motor 
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The permanent magnet synchronous motor’s real-axis stator 

voltage equation is as follows. 
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𝑣 , 𝑖 , and 𝜆  are stator phase voltages, current, and linkage 

magnetic flux, respectively. 𝑅  is the stator winding’s equivalent 

resistance. 

The linkage magnetic flux of each stator phase is as follows. 
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𝐿  is the stator inductance, 𝐾  is the back emf constant, 𝜃  is 

the electrical rotor angle. 

The back electromotive force of each stator phase from 

Equation (1) and Equation (2) is as follows. 
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𝑤  is the electrical rotor speed. 

Coordinate transformation is performed for vector control of a 

permanent magnet synchronous motor. If the coordinates are 

transformed into a stationary reference frame that is based on the 

stator axis and a synchronous reference frame  that is based on 

the rotor axis, Equation (1) and Equation (3) become the 

equations shown below, respectively. 
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If the number of poles in the permanent magnet synchronous 

motor is P, the torque values that occur in the stationary reference 

frame and the synchronous reference frame are as shown below, 

respectively. 

𝑇   𝐾 sin 𝜃 𝑖  cos 𝜃 𝑖  (8) 

𝑇   𝐾 𝑖               (9) 

The mechanical equation of a PMSM  is as follows. 

𝑇  𝐽  𝐵 𝑤  𝑇     (10) 

Jm is the inertia coefficient, Bm is the friction coefficient, Wm is 

the mechanical speed of the rotor, and TL is the load torque. 

Below is the state equation for the permanent magnet 

synchronous motor that uses the current and back electromotive 

force in the stationary reference frame from Equation (4) and 

Equation (5) as state variables. 
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The discrete-time nonlinear state equations including the 

system and measurement noises in a PMSM drive are as follows. 

𝐱 𝐟 𝐱 , 𝐮  𝐰   (13) 

𝐲 𝐡 𝐱  𝐯   (14) 

𝐰  is the system noise, and 𝐯  is the measurement noise. 

3. Unscented Kalman Filter

The unscented Kalman filter has the advantage of using an 

unscented transformation to omit the linearization process that is 

performed by the extended Kalman filter. The extended Kalman 

filter ignores higher-order terms in the linearization process, 

which uses a Jacobian matrix. As such, a margin of error occurs 
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between its estimates and actual systems. The unscented 

transformation in the unscented Kalman filter performs 

estimations by using sigma points and weights to create suitable 

samples according to the number of state variables. By deciding 

upon the sigma points and weights, the unscented Kalman filter 

can perform accurate estimations with a smaller number of 

samples than other stochastic estimation methods. In the 

unscented transformation, the sigma points and weight values can 

vary according to the scaling parameters, and there are several 

types of methods, such as the basic unscented transformation and 

the general unscented transformation [16][17]. The unscented 

transformation’s accuracy is generally proportional to the number 

of samples. However, an increase in the number of samples causes 

an increase in the computation time. The sigma point   is found 

through the error covariance, and the weight   is a constant that 

determines the importance of the estimated values. The scaling 

parameter determines each estimate value assignment. The 

unscented transformation’s sigma points and weights are 

calculated as shown below by finding the upper triangle matrix 

from the error covariance   using Cholesky decomposition. 
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𝐏𝒙 is the error covariance matrix, and n is the dimension of the 

state variable matrix. 𝐮  is a row vector of U. 𝑖 1, 2, ⋯ , 𝑛. 

In the basic unscented transformation, the scaling parameter 

value is 0, and the 0th sigma point and weight are removed. 

Therefore, the number of sigma points in the basic unscented 

transformation is 2n2. Each weight has a fixed value of 1/2n. In 

the general unscented transformation, the number of sigma points 

is 2n2 + n. As the number of sigma points increases, the relative 

accuracy of the unscented transformation, and the computation 

time also increase. 

The unscented Kalman filter, which uses an unscented 

transformation to omit the linearization process, can generally be 

divided into the stages of sigma point and weight calculation, 

prediction, Kalman gain calculation, and estimation. It consists 

of the process below [10][11].  

1) Initialization

2) Calculation of sigma points and weights

3) Relative variable value estimation and error covariance

calculation 

𝒙  𝑊 𝒇 𝒙 18  
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4) Output variable value estimation and error covariance

calculation 
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𝐏  𝑊 𝐡 𝒙   𝐲  𝐡 𝒙   𝐲   𝐑          

5) Kalman gain calculation

𝐏  𝑊 𝐟 𝒙  𝐱  𝐡 𝒙  𝐲                   22  

𝐊  𝐏 𝐏         (23) 

6) State variable and error covariance updating

𝐱  𝐱  𝑲 𝐲  𝐲   (24) 

𝐏  𝐏 ̅  𝐊 𝐏 𝐊                      (25) 

Here, the matrices Q and R are covariance matrices for the 

system noise and measurement noise, respectively. The System 

noise and measurement noise have an average of 0, and they are 

Gaussian noise with a standard distribution. In the covariance 

matrices Q and R, there is no correlation between the noise. 

Therefore, they are each diagonal matrices. 

4. Fuzzy Tuner for Compensated Covariance

Generally, the covariance matrices Q and R are found through 

experience or trial and error; however, it is challenging to find 

accurate values [18]-[21]. This paper proposes a new sensor-less 

speed control method for a permanent magnet synchronous motor 

that uses an unscented Kalman filter that compensates for 

covariance using a fuzzy tuner. Generally, fuzzy systems consist of 

        21  



Sensorless speed control of a permanent magnet synchronous motor using an unscented Kalman filter with compensated covariances 

Journal of Advanced Marine Engineering and Technology, Vol. 44, No. 1, 2020. 2           45 

three parts, as shown in Figure 2 [22]-[25]. The first step is the 

fuzzification step that converts the input data set into a fuzzy set 

using fuzzy linguistic variables or a membership function. In the 

second step, the inference system creates a rule base in which the 

fuzzified membership function is mapped to the output membership 

function set. The last step is defuzzification, in which the output 

membership function is transformed into actual output values. 

Figure 2: The conventional fuzzy system 

Table 1: The fuzzy rule-base 

⊿e 
NM NS ZE PS PM 

e 

NM NM NM NM NS ZE 
NS NM NM NS ZE PS 
ZE NM NS ZE PS PM 
PS NS ZE PS PM PM 
PM ZE PS PM PM PM 

(a) Membership function of error 

(b) Membership function of error change 

(c) Membership function of output 

Figure 3: Membership function of the fuzzy variables 

Fuzzy inferences in this study used the Mandani inference 

method. Table 1 shows the fuzzy rule base and Figure 3 shows 

the membership function of the fuzzy variables. The output for 

the input used the maximum-minimum synthesis rule. Defuzzing 

was performed using the geometric center method. Fuzzy rule 

base errors are output errors from the permanent magnet 

synchronous motor sensor-less drive system, i.e., margins of 

error between the estimated current and the measured current. 

The fuzzy tuner output determined new covariance values. 

5. Simulation and Discussions

Simulations were performed to verify the validity of the 

proposed unscented Kalman filter method that compensates the 

covariance using a fuzzy tuner as a sensorless speed control 

method for permanent magnet synchronous motors. The 

permanent magnet synchronous motor’s rated power, voltage, 

current, and speed were 1 hp, 200 V, 5.4 A, and 2000 rpm, 

respectively. Figure 4 is a block diagram of the proposed 

unscented Kalman filter method that compensates the 

covariance. Matrices Q and R are the covariance matrices for the 

system noise and measurement noise, respectively. They are 

diagonal matrices with no correlation between the noises. 𝐐

diag q q q q , and 𝐑 diag r r . 

Figure 4: Block diagram of the UKF with compensated 

covariance 

Figure 5 shows a block diagram of the proposed permanent 

magnet synchronous motor’s overall sensorless drive system. 

Figure 5: Configuration of overall system 

Q R

u

y
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Figure 6 and Figure 7 show the results of running the 

aforementioned permanent magnet synchronous motor 

sensorless drive system at no load and at a 75 % rated load. The 

speed and torque responses and the changes in the covariance 

values are shown. As shown in the results, the changes in the 

covariance values caused by the fuzzy tuner are beneficial for the 

speed and torque responses. 

(a) Speed 

(b) Torque 

Figure 6: The speed and torque responses 

Figure 7: The variation of the covariance values 

6. Conclusions

The extended Kalman filter, which is a method of sensorless 

speed control for permanent magnet synchronous motors, is 

known to be robust against system and measurement noise. 

However, a margin of error can occur between its estimates and 

actual systems during the process of linearizing nonlinear 

systems, and this can lead to system instability. The permanent 

magnet synchronous motor sensorless speed control method that 

uses an unscented Kalman filter has the advantage of omitting 

the linearization process by performing an unscented 

transformation. Furthermore, the covariance matrix values that 

are set in a Kalman filter are typically found through experience 

or trial and error, but it is challenging to obtain accurate values. 

This paper proposes an unscented Kalman filter method that 

compensates the covariance using a fuzzy tuner as a new 

sensorless speed control method for permanent magnet 

synchronous motors. As shown in the results, the covariance 

compensation was properly performed in various conditions, 

such as no-load, load, and variable speed. 
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