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Abstract: Shipping companies consistently want to minimize losses and maximize profits by accurately predicting the direction and 

magnitude of fluctuations in maritime situations. However, the determinants of maritime markets are diverse and volatile, and the 

decision mechanism is complex. Accurately predicting the direction and magnitude of fluctuations remains a difficult challenge. This 

study was conducted to evaluate the accuracy of multi-step-ahead forecasting of VLCC tanker markets by using an artificial neural 

network (ANN) training algorithm with the Levenberg-Marquardt and Bayesian regularization algorithms. The advanced time for 

forecasting was divided into one, three, six, nine, 12, and 15 months. The ANN predictions were conducted on the earnings for 

VLCC markets, and the datasets of the variables used in the forecast were 204 monthly time-series data from January 2000 to 

December 2016. 
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1. Introduction
The world crude oil production in 2016 was 4448 million 

tons [1], and the total amount of crude oil transported by sea 

was 1949 million tons, which accounted for 43.8% of total 

crude oil production. The crude tanker demand for world 

seaborne trade was 178.5 million dwt for VLCC (200,000 dwt 

and over), 56.8 million dwt for SUEZMAX (125–199,999 dwt), 

and 55.5 million dwt for AFRAMAX (85–124,999 dwt) [2]. 

However, the oil tanker markets, which account for a large 

portion of world maritime transport, is highly influenced by the 

interaction of supply and demand in tanker transportation 

services and is highly volatile [3]. Therefore, predicting the 

changes in these markets is critical for all stakeholders, 

particularly those of the tanker market demand and supply 

sides.  

This study focuses on predicting ANN for earnings for 

VLCC, which plays a major role in the marine transportation of 

crude oil. In addition, we evaluate the accuracy of an ANN 

prediction model when used with the Levenberg–Marquardt and 

Bayesian regularization algorithms.  

Operating earnings can be derived from the time-charter rates 

or time-charter equivalent of spot rates when a vessel is 

operating in the spot market. Earnings are more representative 

of what an operating tanker produces [4]. Therefore, when 

choosing an ANN prediction target for the VLCC market, we 

selected the VLCC market earnings (USD/day) instead of the 

freight index (world scale, or WS).  

2. Training algorithm of ANN

2.1 Mean squared error of ANN training algorithm 
Learning is the fundamental capability of neural networks. 

Supervised learning adjusts network parameters by directly 

comparing the desired and actual network output. Supervised 

learning is a closed-loop feedback system in which the error is 

the feedback signal. The error measure, which indicates the 

difference between the output from the network and from 

training samples, is used to guide the learning process. The 

error measure is usually defined by the mean squared error 

(MSE) [5]. 

MSE =  1
𝑄𝑄

 ∑ (𝑡𝑡𝑞𝑞 −  𝑎𝑎𝑞𝑞)2 𝑄𝑄
𝑞𝑞=1  (1) 

where Q is the number of pattern pairs in the sample set, 𝑡𝑡𝑞𝑞 is 

the output part of the qth pattern pair, and 𝑎𝑎𝑞𝑞 is the network 
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output corresponding to the pattern pair q. The MSE is 

calculated anew after each epoch. The learning process is 

terminated when MSE is sufficiently small or the failure 

criterion is met. 

2.2 Levenberg–Marquardt algorithm 
The Levenberg–Marquardt algorithm, which is a numerical 

optimization technique [6], was designed to minimize functions 

that are sums of squares of other nonlinear functions in neural 

network training, where the performance index is the MSE. 

When the performance index is F(𝔁𝔁) , the Levenberg–

Marquardt algorithm for optimizing the performance index 

F(𝔁𝔁) is represented as [7]: 

𝒙𝒙𝑘𝑘+1 =  𝒙𝒙𝑘𝑘   − [ 𝑱𝑱𝑇𝑇(𝒙𝒙𝑘𝑘)𝑱𝑱(𝒙𝒙𝑘𝑘)  +  𝜇𝜇𝜅𝜅]−1𝑱𝑱𝑇𝑇(𝒙𝒙𝑘𝑘)𝑽𝑽(𝒙𝒙𝑘𝑘)       (2) 

Here, as the changing value of 𝜇𝜇𝐾𝐾, the performance index 𝐹𝐹(𝔁𝔁) 

of the network can be adjusted through the optimization 

algorithms with a small learning rate, where 𝑱𝑱(𝒙𝒙𝑘𝑘) and 𝑽𝑽(𝒙𝒙𝑘𝑘) 

are the matrix elements used to compute the gradient. 

2.3 Bayesian regularization algorithm 
The complexity of a neural network is determined by the 

number of free parameters of weights and biases, which is 

determined by the number of neurons. If the network is too 

complex for a given dataset, then it is likely to overfit and have 

poor generalization [8]. The simplest method for improving 

generalization is early stopping. Another method is known as 

regularization [9]. One of two possible approaches can be used 

to improve the generalization capability of a neural network: 

restricting either the number of weights or the magnitude of 

weights, where the latter is called regularization.  

The Bayesian regularization algorithm can be written as the 

sum of squares of network weights as follows: 

F(𝔁𝔁) =  𝛽𝛽𝐸𝐸𝐷𝐷 + α𝐸𝐸𝑊𝑊 = β∑ (𝒕𝒕𝓆𝓆 −  𝒂𝒂𝓆𝓆)𝑇𝑇𝒬𝒬
𝓆𝓆=1 (𝒕𝒕𝓆𝓆 −  𝒂𝒂𝓆𝓆) 

+ α∑ 𝓧𝓧𝒾𝒾
2𝓃𝓃

𝒾𝒾=1        (3) 

where F(𝔁𝔁)  is the regularized performance index. Here, the 

regularization ratio α/β controls the effective complexity of the 

network solution. 

3. Methodology

3.1 Data collection 
The tanker freight market is characterized by interaction 

between many determinants of supply and demand in tanker 

transportation services [10]. To forecast the dynamics and 

fluctuations of freight rates in tanker freight markets, 

considerable research has been conducted using univariate or 

multivariate time-series analytical techniques [11] and ANN 

models [12]. 

For all data used in forecasting of oil tanker markets in this 

study, global oil production, world GDP, active fleets, new 

building prices, second-hand ship prices, demolition prices, 

time-charter rates, bunker prices, and crude oil prices were 

selected as independent variables, whereas dirty tanker earnings 

was selected as the dependent variable.  

Thus, the aggregated data were composed of nine 

independent variables and one dependent variable, where each 

variable was based on 204 monthly observations from January 

2000 to December 2016.  

3.2 Identification of ANN architecture 
After the data for forecasting tanker markets were collected, 

the type of ANN architecture used to solve the problem of 

tanker market prediction, as well as the number of neurons and 

layers used in the network, were all determined. In ANN 

dynamic networks, the output depends not only on the current 

input to the network but also on previous inputs, outputs, and/or 

states of the network. Tanker markets prediction is part of an 

analysis that predicts the future value of a time series. 

Therefore, in this study, we selected dynamic networks as an 

appropriate ANN model to forecast dirty tanker markets. The 

non-linear autoregressive model with exogenous inputs (NARX 

networks) [5][8], which is a widely used network for applying 

predictions, is a recurrent dynamic network with feedback 

connections that encompass multiple layers of the network. This 

is shown in Figure 1.  

Until now, prediction using ANN for VLCC tanker markets 

has been performed using the Levenberg–Marquardt training 

algorithm [12]-[15]. However, no Bayesian regularization 

algorithm has been used to predict earnings for such markets. 

Therefore, this study focuses on using ANN for prediction of 

earnings for VLCC tanker markets and evaluates the accuracy 

of the ANN prediction model using the Levenberg–Marquardt 

and Bayesian regularization algorithms.  

After we identified the network structure, the number of hidden 

layers in these two learning algorithms was determined to enable 

us to compare performance results and functions more easily. 

To determine the number of neurons in the hidden layer to 

identify the best prediction performance for the VLCC tanker 
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market without overfitting, we adjusted the number of neurons 

in the hidden layer of the ANN structure using the Levenberg-

Marquardt algorithm. In addition, using the Bayesian 

regularization algorithm, we had the ANN perform prediction 

for two cases using eight and 10 neurons of the hidden layer, 

respectively, based on nine total input variable numbers [7]. We 

then evaluated the performance results. 

Only one neuron was present in the output layer, which had 

the same size as that of the target. 

Figure 1: NARX network (closed loop) for VLCC tanker 

market prediction 

The prediction for VLCC markets earnings with the advanced 

periods of one, three, six, nine, 12, and 15 steps (months) were 

performed using MATLAB with the neural network toolbox. 

The inputs of the testing ANN model had nine nodes for input 

signals. In addition, the hidden layer was composed of neurons, 

with the tan-sigmoid transfer function selected as the neuron 

activation function. The value of the tagged delay line as a time 

delay was adjustable to avoid producing correlation effects.  

3.3 Post-training validation 
As an essential tool for neural network validation, the 

regression coefficient between the network output and target, 

known as the R value, should approximate 1 to ensure reliable 

ANN performance results. In addition, when applying dynamic 

networks for prediction, such as the focused time-delay neural 

network, two crucial factors must be considered when analyzing 

the trained prediction network: prediction errors should not be 

correlated either in time or with the input sequence. 

4. Implementation

4.1 Data processing 
The previously mentioned 204 data points of each variable in 

the period from January 2000 to December 2016 were randomly 

sampled during computation and divided into three datasets for 

training, validation, and testing. When the Levenberg–

Marquardt algorithm was applied for iterative computing, the 

training set comprised approximately 70% of the full dataset, 

with the validation and test datasets each consisting of 

approximately 15%. In addition, when the Bayesian 

regularization training technique was applied, the testing data 

set was assigned as only 15% of the full dataset because the 

validation sequence was not applied to the algorithm. 

4.2 ANN model for VLCC market prediction 
A schematic of the ANN network for tanker market 

prediction is shown in Figure 2. When the Levenberg–

Marquardt algorithm was applied, the number of neurons in the 

hidden layer was adjusted to improve the accuracy of the 

prediction performance. In addition, when the Bayesian 

regularization algorithm was applied, the number of neurons in 

the hidden layer was fixed to eight and 10 to compare the 

performance results of these two cases with those from the 

Levenberg–Marquardt algorithm.  

The number of neurons in the output layer was the same as 

the size of the target. The output layer was composed of one 

neuron with the linear function as its activation function. 

Figure 2: ANN schematic of NARX network for VLCC tanker 

market prediction 

4.3 Computation 
Each implementation for prediction was repeated several 

times to identify the optimal parameters and conditions of the 

network. When the results were unsatisfactory, training was 

repeated after weights and biases were initialized. When the 

Levenberg–Marquardt algorithm was trained, the number of 

neurons was adjusted to prevent overfitting or extrapolation. 



Young-Jun Jungㆍ Sung-hee Kangㆍ Deog-hee Doh 

Journal of the Korean Society of Marine Engineering, Vol. 42, No. 10, 2018. 12      854 

The value of the tagged delay line as a time delay was 2 

(months) without any change made during implementation. The 

computational results from the Levenberg–Marquardt algorithm 

were considered as reasonable when the algorithm was fitted 

with the following considerations: 

ㆍ The final mean performance index (MSE) was small 

ㆍ The test set error (test performance index (MSE)) and validation 

set error (validation performance index (MSE)) had similar 
characteristics 

ㆍ Expert judgment was used in determining various parameters 

 and performance indices 

When the Bayesian regularization technique was trained, 221 

parameters in the 9-10-1 (input to number of neurons of the 

hidden layer to output) network, and 177 parameters in the 9-8-

1 network were employed. The effective number of parameters 

was a minimum of 27 and a maximum of 172 when the 9-10-1 

network was trained. The training of the 9-10-1 network 

effectively used less than 77% of the total number of weights 

and biases. The computational results for the training of the 

Bayesian regularization algorithm were considered as 

reasonable when the following were considered: 

ㆍ The final mean performance index (MSE) was small 

ㆍ The training error (training performance index (MSE)) was small 

ㆍ Expert judgment was used in determining various parameters 

 and performance indices 

The computer used for the calculation had an Intel® Core ™ 

i5-5200U CPU @ 2.20 GHz. 

4.4 Validation 
The regression plots display the network outputs with respect 

to targets for training, validation, and test datasets. For this 

problem, the fit was reasonably good for all datasets, The 

validation for this problem was satisfactory for all data sets in 

each case with an R value of at least 0.93. The autocorrelation 

function of the prediction error and the cross-correlation function 

to measure the correlation between the input and prediction error 

were used during ANN prediction model validation. 

5. Results
5.1 Comparison of prediction performance for VLCC 

All implementation results of the mean performance index 

(MSE) are presented in Table 2 - Table 7 and Figure 3 - Figure 8 

for use in evaluating the accuracy of the ANN prediction model. 

5.1.1 One-month-ahead prediction 

Figure 3 shows that BRA.TDS-15.NN-10 network had 

relatively good convergence with the total progression of the 

observation values . The networks of BRA.TDS-15.NN-10 and 

BRA.TDS-15.NN-8 showed better convergence-to-target values 

than did LMA.TDS-15.NN-9. The mean performance indices of 

the BRA.TDS-15.NN-8 and BRA.TDS-15.NN-10 networks 

were nearly the same. However, the training performance error 

of the BRA.TDS-15.NN-10 network was 0.266, which was 

much lower than that of the BRA.TDS-15.NN-8 network 

(1.3874), as shown in Table 2. 

Table 1 shows the performance results for one-month-ahead 

prediction using the Levenberg–Marquardt algorithm for 

different numbers of neurons in the hidden layers. Each case 

shows best performance results without overfitting. When the 

number of neurons was greater or less than the number of input 

variables of 9, the results did not change satisfactorily. Note that 

during testing, the magnitude of the μ value was changed from 

0.01 to 0.1 to speed up the conjugation. 

Table 1: Comparison of one-month-ahead predictions based on 

different neuron numbers with the Levenberg-Marquardt 

algorithm 

[ One-month-
ahead 

Prediction ] 

ANN (Levenberg-Marquardt algorithm) 

NN-7 NN-8 NN-9 NN-10 
Epoch 11 11 12 15 
μ 0.1 0.01 0.1 0.01 

Gradient 8.11 19.9 8.68 9.6 
Regression 0.92432 0.93793 0.96639 0.94919 

Mean 
Performance 

Error 
28.2745 24.9203 12.2177 18.7857 

Train 
Performance 

Error 
10.1344 16.0031 9.2426 6.7629 

Validation 
Performance 

Error 
73.9551 44.9173 17.0812 62.3482 

Test 
Performance 

Error 
68.4571 47.1315 21.4366 32.1312 

NN-: Number of neurons in the hidden layer 
(Unit of Performance Error:  x 1000 USD/Day) 

5.1.2 Three-months-ahead prediction 

Table 3 shows that with the Bayesian regularization 

algorithm, as the size of the hidden layer neuron increased, both 

the number of iterations and computing time increased, and the 

gradient value and train performance error (MSE) converged to 
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a smaller value. However, even though the size of the hidden 

layer neuron increased in the short-term-ahead prediction, the 

mean performance index of 8.6425 for eight neurons showed 

significantly better results than 8.9288 for 10 neurons in the 

same forecasting horizon.  

5.1.3 Six-months-ahead prediction 

Table 4 shows that even though the number of hidden layer 

neurons increased from eight to 10 neurons, the gradient value and 

training performance error (MSE) did not converge to a smaller 

value. The training, validation, and test performance errors with the 

Levenberg–Marquardt algorithm showed a significant error in size 

despite no indication of overfitting or extrapolation. 

5.1.4 Nine-months-ahead prediction 

Figure 6 shows that the BRA.TDS-15.NN-8 network had 

relatively good convergence with the total progression of the 

observation values. However, during sudden up and down 

changes in the market, unstable prediction also appeared with 

the 6-months-ahead prediction. The training, validation, and test 

performance errors with the Levenberg–Marquardt algorithm 

showed significant errors in size despite no indication of 

overfitting or extrapolation.  

5.1.5 12-months-ahead prediction 

Table 6 shows that the mean performance index of 4.9389 

with 10 neurons in 12-months-ahead prediction had better 

results than did the index of 9.3915 with eight neurons and as 

compared to the other training algorithm in the same forecasting 

horizon. As shown in the table, in the long-term-ahead 

forecasting, such as in 12-months-ahead prediction, the training 

algorithm, which had a larger hidden layer neuron, exhibited 

better forecasting performance than with the smaller neuron. 

The Levenberg–Marquardt algorithm showed a significant error 

in size despite no indication of overfitting or extrapolation. 

5.1.6 15-months-ahead prediction 

Table 7 shows that the mean performance index of 8.243 for 

10 neurons with the Bayesian regularization algorithm 

generated better results than did the index of 10.5656 for eight 

neurons and as compared to the other training algorithm in the 

same forecasting horizon. As shown, similar performance 

results occurred with the 12-months-ahead prediction as with 

other long-term-ahead forecasting when the training algorithm 

was applied, where larger neurons exhibited better forecasting 

performance than did the smaller. 

Table 2: Comparison for one-month-ahead prediction of VLCC 

[ One-month-ahead 
Prediction ] 

ANN Architecture
BRA .TDS 
-15. NN-8 

BRA .TDS 
-15. NN-10 

LMA .TDS 
-15. NN-9 

Epoch /computing 
time(sec) 279/5 443/9 12 

μ - - 0.1 

Gradient 0.82 0.329 8.68 

Effective number of 
Parameter(used/total) 120/177 147/221 - 

Regression 0.98218 0.98175 0.96639 

Mean Performance Error 6.7013 6.7026 12.2177 

Train Performance Error 1.3874 0.266 9.2426 
Validation Performance 

Error - - 17.0812 

Test Performance Error 37.168 43.6063 21.4366 
(Unit of Performance Error:  x 1000 USD/Day) 

Figure 3: One-month-ahead prediction of VLCC 

Table 3: Comparison for 3-months-ahead prediction of VLCC 

[ 3-months-ahead 
Prediction ] 

ANN Architecture 
BRA .TDS 
-15. NN-8 

BRA .TDS 
-15. NN-10

LMA .TDS 
-15. NN-9 

Epoch  /computing 
time(sec) 370/6 707/13 12 

μ - - 0.1 

Gradient 1.0 1.23 11.3 

Effective number of 
Parameter(used/total) 114/177 121/221 - 

Regression 0.97649 0.97605 0.93509 

Mean Performance Error 8.6425 8.9288 23.8859 

Train Performance Error 2.2021 1.9989 10.3963 
Validation Performance 

Error - - 58.8623 

Test Performance Error 46.6056 48.6599 54.7607 
(Unit of Performance Error:  x 1000 USD/Day) 



Young-Jun Jungㆍ Sung-hee Kangㆍ Deog-hee Doh 

Journal of the Korean Society of Marine Engineering, Vol. 42, No. 10, 2018. 12      856 

Figure 4: 3-months-ahead prediction of VLCC 

Table 4: Comparison for 6-months-ahead prediction of VLCC 

[ 6-months-ahead 
Prediction ] 

ANN Architecture 
BRA .TDS 
-15. NN-8 

BRA .TDS 
-15. NN-10

LMA .TDS 
-15. NN-8 

Epoch  /computing 
time(sec) 347/6 707/15 17 

μ - - 0.001 
Gradient 0.999 1.23 37.8 

Effective number of 
Parameter(used/total) 110/177 121/221 - 

Regression 0.97983 0.97605 0.92713 

Mean Performance Error 7.8063 8.9288 27.5454 

Train Performance Error 2.0636 1.9989 15.7874 
Validation Performance 

Error - - 56.4943 

Test Performance Error 40.7316 48.6599 54.2511 
(Unit of Performance Error:  x 1000 USD/Day) 

Figure 5: 6-months-ahead prediction of VLCC 

Table 5: Comparison for 9-months-ahead prediction of VLCC 

[ 9-months-ahead 
Prediction ] 

ANN Architecture 
BRA .TDS 

-15. NN-8 
BRA .TDS 

-15. NN-10
LMA .TDS 

-15. NN-9 
Epoch  /computing 

time(sec) 279/4 247/5 15 

μ - - 0.01 
Gradient 0.82 0.602 99.6 

Effective number of 
Parameter(used/total) 120/177 136/221 - 

Regression 0.9828 0.97937 0.94738 

Mean Performance Error 6.7013 7.6663 19.2948 

Train Performance Error 1.3874 0.6623 7.5927 
Validation Performance 

Error - - 44.3444 

Test Performance Error 37.168 47.8225 49.6353 
(Unit of Performance Error:  x 1000 USD/Day) 

Figure 6: 9-months-ahead prediction of VLCC 

Table 6: Comparison for 12-months-ahead prediction of VLCC 

[ 12-months-ahead 
Prediction ] 

ANN Architecture 
BRA .TDS 

-15. NN-8 
BRA .TDS 

-15. NN-10
LMA .TDS 

-15. NN-9 
Epoch  /computing 

time(sec) 310/5 639/13 15 

μ - - 0.1 

Gradient 0.553 0.397 4.95 
Effective number of 

Parameter(used/total) 124/177 146/221 - 

Regression 0.97443 0.98681 0.95092 
Mean Performance Error 9.3915 4.9389 17.8695 
Train Performance Error 0.8942 0.3323 6.6971 
Validation Performance 

Error - - 39.4219 

Test Performance Error 58.1091 31.3500 49.1998 
(Unit of Performance Error:  x 1000 USD/Day) 
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Figure 7: 12-months-ahead prediction of VLCC 

Table 7: Comparison for 15-months-ahead prediction of VLCC 

[ 15-months-ahead 
Prediction ] 

ANN Architecture 
BRA .TDS 
-15. NN-8 

BRA .TDS 
-15. NN-10

LMA .TDS 
-15. NN-6 

Epoch  /computing 
time(sec) 229/4 341/7 15 

μ - - 0.01 
Gradient 0.839 0.298 30.3 

Effective number of 
Parameter(used/total) 116/177 149/221 - 

Regression 0.97111 0.97762 0.94432 
Mean Performance Error 10.5656 8.243 20.1285 
Train Performance Error 1.5528 0.2142 11.0865 
Validation Performance 

Error - - 42.1246 

Test Performance Error 62.239 54.2748 40.9310 
(Unit of Performance Error:  x 1000 USD/Day) 

Figure 8: 15-months-ahead prediction of VLCC 

where: 
LMA   : Levenberg-Marquardt Algorithm 
BRA    : Bayesian Regularization Algorithm 
TDS-   : Test data set for full input data set (%) 
NN-     : Number of neurons of hidden layer 

5.1.7 Comparison of performance index with the training 

algorithm  

Figure 9 shows that the Bayesian regularization algorithm 

produced satisfactory results for all prediction horizons as 

compared to the Levenberg-Marquardt algorithm. In addition, 

in both training algorithms, the prediction results were generally 

satisfactory when the number of neurons in the hidden layer 

was similar to the number of input variables. The exception was 

12-months-ahead prediction with the Levenberg-Marquardt 

algorithm. Particularly in the case of the Bayesian 

regularization algorithm, up to 9-months-ahead prediction 

showed more satisfactory prediction results with smaller 

neurons in the hidden layer as compared to the number of input 

variables. However, in 12- and 15-months-ahead predictions, 

results that are more satisfactory were obtained with greater 

numbers of neurons in the hidden layer as compared to the 

number of input variables. 

Figure 9: Comparison of performance index for training 

algorithm 

6. Conclusion
In this study, we proposed alternatives to the ANN training 

algorithm to address the problem of multi-step forecasting. We 

used 204 monthly time-series data from 2000 to 2016 for dirty 

tankers of VLCC. Training algorithms used for the neural 

networks were the Levenberg–Marquardt and Bayesian 

regularization algorithms. A summary of this study’s findings 

are as follows. 

ㆍ The Bayesian regularization algorithm outperformed the 

Levenberg-Marquardt algorithm for all prediction horizons. 

ㆍ The prediction performance results from both algorithms 

were generally satisfactory when the number of neurons in 
the hidden layer was similar to the number of input variables. 
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ㆍ In the Bayesian regularization algorithm, when the size of the 

hidden layer neuron increased, the number of iterations and 
computing time increased, and the gradient value and training 
performance error (MSE) converged to a smaller value.  

ㆍ In the predictions within 9-months-ahead prediction, the 

ANN training architecture with smaller neurons in the 
hidden layer showed the better performance.  

ㆍ In the predictions exceeding 9-months-ahead prediction, the 

ANN training architecture with larger neurons in the hidden 
layer showed the better performance. 

This study showed that ANN can be used as a major tool in 

more accurately predicting market changes regardless of the 

magnitude of fluctuations. However, to improve predictive 

performance, designing an optimal ANN architecture for 

predicting targets is essential. 

Acknowledgements 
This research was supported by Basic Science Research 

Program through the National Research Foundation of Korea 

(NRF) funded by the Korea Government 

(No.2017R1A2B2010603). Further, this has been also 

supported by the program of the developments of convergence 

technology funded by TIPA/SMBA of Korea (S2356988) and 

by the World Class 300 R&D program (S2415805), the Special 

Program for Occupation (R0006323) and Business Cooperated 

R&D Program (R000626) of MOTIE of Korean Government. 

References 
[1]The International Energy Agency (IEA), 

https://www.iea.org/statistics/kwes/, Accessed October 20, 2017.  

[2] Clarksons Research Services, https://sin.clarksons.net/Timeseries, 

Accessed December 19, 2017.       

[3] D. Hawdon, “Tanker freight rates in the short and long run,” 

Applied Economics, vol. 10, no. 3,  pp. 203-217, 1978. 

[4] A. H. Alizadeh and N. K. Nomikos, “Trading strategies in 

the market for tankers,” Maritime Policy and Management, 

vol. 33, no. 2, pp. 119-140, 2006. 

[5] K. L. Du and M. N. S. Swamy, Neural Networks and 

Statistical Learning, Springer London, 2014. 

[6] D. F. Shanno, Recent advances in numerical techniques for 

large scale optimization, Neural networks for control, 

Cambridge MA: MIT Press, 1990. 

[7] L. E. Scales, Introduction to Non-Linear Optimization, New 

York, Springer-Verlag, pp. 110-136, 1985. 

[8] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. D. Jesὑs, 

Neural Network Design, 2nd edition, 2014. [Online]. 

Available: http://hagan.okstate.edu/NNDesign.pdf. 

[9] A. N. Tikhonov, “On the solution of ill-posed problems and 

the regularization method,” Dokl. Acad. Nauk USSR, vol. 

151, no. 3, pp. 501-504, 1963. 

[10] M. Beenstock and A. R. Vergottis, “An econometric model 

of the world tanker market,” Journal of Transport 

Economics and Policy, vol. 23, no. 2, pp. 263-280, 1989. 

[11] M. G. Kavussanos, “Time varying risks among segments of 

the tanker freight markets,” Maritime Economics and 

Logistics, vol. 5, no. 3, pp. 227-250, 2003. 

[12] J. Li and M. G. Parsons, “Forecasting tanker freight rate 

using neural networks,” Maritime Policy and Management, 

vol. 24, no. 1, pp. 9-30, 1997. 

[13] P. Eslami, K. H. Jung, D. W. Lee, and A. Tjolleng, 

“Predicting tanker freight rates using parsimonious variables 

and a hybrid artificial neural network with an adaptive 

genetic algorithm,” Maritime Economics & Logistics, pp.1-

13, 2016. 

[14] D. V. Lyridis, P. Zacharioudakis, P. Mitrou, and A. 

Mylonas, “Forecasting tanker market using artificial neural 

network,” Maritime Economics and Logistics, vol. 6, no. 2, 

pp. 93-108, 2004. 

[15] A. Santos, L. N. Junkes, and F. C. M. Pires, Jr, 

“Forecasting period charter rates of VLCC tankers through 

neural networks: A comparison of alternative approaches,” 

Maritime Economics & Logistics, vol. 16, no. 1, pp. 72-91, 

2013. 


	Forecasting earning of VLCC tankers using artificial neural networks
	Abstract
	1. Introduction
	2. Training algorithm of ANN
	3. Methodology
	4. Implementation
	5. Results
	6. Conclusion
	References


