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Abstract: In this paper, we propose a new forecasting approach that finds a nearest-neighbor optimum for forecasting. It blends the 

advantages of subsample use (k-nearest neighbor, rolling window, etc.) and entire sample use. Basically, it belongs to the range of 

nearest neighbor methods but is different from them in that it also considers the entire sample, which can help to yield less variance in 

test error than other subsample methods. To improve forecasting accuracy, we also used a modified least squares method in the process 

of this forecasting approach. From simulation tests, we were able to verify that this approach yielded less test error than other methods 

that do not adopt this approach. Empirical verification using time-series data on the ship accident also supported that this approach is able 

to improve forecasting accuracy. In addition, we were able to verify that the test errors obtained from this approach were less than the 

residuals obtained from fitting using the actual future value in many cases. A new parameter controlling a weight between the subsample 

and the entire sample is introduced, and the forecasting performance may depend on how this parameter can be efficiently used. 
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1. Introduction 
Both entire sample and subsample use have pros and cons 

when used for forecasting. The former has been intensively 

addressed in asymptotic studies and the latter is usually seen in 

machine learning or related fields. From a test error point of view, 

the former contributes low variance to test error, the latter 

contributes a low bias to it, and so in most cases, unbiasedness 

should be assumed in the former even at the cost of high test error. 

Meanwhile, in the stochastic process, moving average methods 

adopt the nearest subsample for better forecasting, which is called 

rolling or sliding window. Although there are some studies on 

how to determine the rolling window in some specific situations 

[1][2], there does not seem to be a universal approach, and so the 

forecasting performance is sensitive to the size of the rolling 

window [3].   

There is also a similar problem when using the k-nearest 

neighbor (kNN) algorithm, specifically concerning how to 

determine the size of k. Analogous to the problem of selecting the 

rolling window, it also varies depending on a given data set, and 

so we should experimentally estimate the optimal k value from  

past forecast results. There are still some technical aspects to be 

determined such as which form of k should be used. For example, 

an estimate of k may seriously vary according to the location 

from which it is obtained; we need to decide which to use from 

the average k, the most recent k, or another representative k. The 

degree of data dispersion (noise) is also a crucial factor for the 

kNN algorithm when assessing its performance on forecasting [4].  

When forecasting, one may prefer nearest neighbor methods to 

guess a neighboring future value or use an entire sample to 

discover the underlying process before making the forecast. If we 

set a closed interval in which the initial point is kNN and the end 

point is the entire sample, and we can consider a linear 

combination of these two that can be used for the accurate 

forecasting. We call this adjusted k-nearest neighbor (AkNN) and 

searching for it is the key to more accurate forecasting and is the 

core idea presented in this paper.  
 

 
Figure 1: Linear combination between kNN and the entire 
sample 
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There is another trick to improve forecasting accuracy by 

using pseudo data to forecast future values [5][6] based on the 

typical fact that training error underestimates test error [7]. If we 

transform test error minimization problem to training error one, 

we can obtain an estimate more appropriate to minimizing test 

error than just minimizing training error when estimating 

parameters. We use this technique associated with the process of 

finding the AkNN.  

For the numerical verification of our proposed method, we 

used simulation data sets and real time-series data of the ship 

accident in South Korea. For each case, we forecast the number 

of the one-step ahead ship accident based on the training data.   

The remainder of the paper is organized as follows. The 

theoretical background of our forecasting method is introduced in 

Section 2, and Section 3 contains the verification of this approach 

with simulation studies and on two sets of empirical data, while 

conclusions and future work are covered in Section 4.  

2. Methods
2.1 Nearest-Neighbor Approaches 

Of the popular nearest neighbor approaches, kNN is used in 

the field of machine learning, and rolling window is used in the 

field of time series analysis.  

Most studies have mainly addressed the kNN algorithm in 

classification or fitting, while some have adopted it for 

forecasting. For example, the kNN algorithm has been used to 

forecast future traffic flow, and the method based on the kNN 

algorithm gave more improved forecasting accuracy than one that 

was not [8]. In another study, the kNN algorithm has been 

combined with an SVM according to the distance from a 

separating hyperplane for solar flare forecasting [9]. There are 

also some studies using kNN on time series prediction; for 

example, the kNN algorithm has been applied to forecasting 

short-term electric energy demand and compared with a 

conventional dynamic regression technique [10]. An interesting 

approach has also been proposed to find an optimal size of 

nearest neighbor for time-series prediction by using multiple 

nearest neighbors to same data [11]. Thus, there have been many 

studies combining kNN algorithm with other machine learning 

techniques or applying it to practical areas, however it seems that 

there are not many studies addressing the shortcoming of it, 

which is caused by using only a small part of the entire sample.  

In moving average methods, a rolling window refers to the size 

of the most recent data to forecast future values. It is similar to 

kNN in that it uses neighboring points, but it only considers the 

distance in the space of a predictor. In a moving average method, 

consider the time series sequence { 𝑦𝑦𝑡𝑡 }t =1,… , and when 

forecasting a value at t = T with rolling window n, then the 

moving average is  

𝑦𝑦𝑇𝑇 = 𝑛𝑛−1 ∑ 𝑦𝑦𝑡𝑡𝑇𝑇−1
𝑡𝑡=𝑇𝑇−𝑛𝑛 .     (1) 

Based on the similarity of the nearest observations, a better 

forecast can be obtained than one from using a whole data set 

according to n, although only considering the n data may lead to a 

large variance. Therefore, selecting the optimal window size is a 

critical issue for accurate forecasting, and in many applications, it 

is experimentally obtained from past data. Rolling windows of 

different sizes were used, and the results from them were 

compared using an autoregressive model for forecasting the 

consumer price index and industry production [12], and a specific 

rolling window of size 68 selected out of 60-82 was used when 

forecasting inflation indices across five countries [13]. There have 

also been researchers who have tried an analytical approach on 

how to determine the window size. The study in [14] focused on 

estimating the windows size when structural breaks existed in a 

given stochastic process because these affected changes in the 

parameters to be estimated. Approaches based on geometrical 

characteristics to find the optimal window size have also been 

attempted [15]. Unlike the studies using kNN algorithm, many 

studies using a rolling window seem to have mainly focused on 

forecasting in practical areas, and so the optimal window sizes 

widely vary depending on the given data. 

2.2 Combination for Forecasting 
Test error is typically higher than training error obtained from 

a given data set [7]. Therefore, among forecasting-oriented 

studies, alleviating over-fitting plays a major role in getting an 

accurate forecast. Shrinkage or regularization methods in the field 

of machine learning such as ridge regression, lasso, etc. have 

been introduced to deal with the over-fitting problem. When 

considering the shrinkage of estimated coefficients to avoid being 

overly biased against one forecasting model, a combination of 

several forecasts can be an alternative. Consider forecasts 𝑓𝑓1, . . ., 

𝑓𝑓𝑀𝑀 from M models and suppose that their variances 𝜎𝜎1, . . ., 𝜎𝜎𝑀𝑀 

are uncorrelated, then combination of forecasts 𝑓𝑓𝑐𝑐  is 

𝑓𝑓𝑐𝑐= ∑ 𝑓𝑓𝑖𝑖𝑀𝑀
𝑖𝑖=1 ω𝑖𝑖 ,    (2) 

where ω𝑖𝑖 = 𝜎𝜎𝑖𝑖
−2

∑ 𝜎𝜎𝑗𝑗
−2𝑀𝑀

𝑗𝑗=1
 and ∑ ω𝑖𝑖

𝑀𝑀
𝑖𝑖=1 = 1 . Note that the weight is 

inversely proportional to the forecast’s variance [16]. A 
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combination of forecasts still yields an accurate forecast even in 

cases where the variances of the forecasts are correlated [17]. 

Furthermore, analogous to shrinkage or regularization, a unique 

approach was suggested to shrink 𝑓𝑓𝑐𝑐  into 𝜆𝜆𝑓𝑓𝑐𝑐, 𝜆𝜆 < 1,  giving up the 

sum of a combination of weights to be one for better accuracy [18].  

The idea of combining forecasts is based on Jensen’s 

inequality [16] as long as a loss function is convex. Meanwhile, 

questions remain on how many forecasting methods to use and 

which ones work well together.  

We also found a different type of combination under structural 

change [19]. In this study, rather than combining forecasts from 

different models, the method here was to combine the estimated 

coefficients of rolling and expanding (or recursive) windows in 

the same forecasting model. Let �̂�𝛽𝑅𝑅  and �̂�𝛽𝐸𝐸  be the estimated 

coefficients in rolling and expanding window forecasts, 

respectively, then the combination coefficient is  

 𝛽𝛽�𝐶𝐶 =  𝛼𝛼�̂�𝛽𝑅𝑅 + (1 − 𝛼𝛼) �̂�𝛽𝐸𝐸 ,   (3) 

where 𝛼𝛼 is an optimal weight of less than 1. 

This approach has the advantage of not considering the choice 

among the forecasting models unlike the previous forecasting 

combination, but it is still a linear combination of already 

estimated parameters bounded by �̂�𝛽𝑅𝑅  and �̂�𝛽𝐸𝐸 , similar to the 

previously reported forecasting combination methods. 

2.3 Least Squares Adjusted With Pseudo Data (LSPD) for 

Forecasting 

Let us consider a data set {𝑦𝑦𝑡𝑡}𝑡𝑡=1,…,𝑇𝑇 and suppose that we want 

to forecast 𝑦𝑦𝑇𝑇+1 . In most cases, we use estimated parameters 

obtained from using the T data set to forecast a future value at 

T+1. Unfortunately, the over-fitting problem is likely to occur in 

this case unless the stochastic process is a martingale, i.e., 

E(𝑦𝑦𝑇𝑇+1|𝑦𝑦𝑇𝑇 , … ,𝑦𝑦1) =  𝑦𝑦𝑇𝑇. 

If we set a pseudo value close to the future value at T+1, we 

can construct a loss function including the (T+1) data set rather 

than the T data set and obtain a better forecast using this 

transformation [5][6]. Hence, test error obtained from the (T+1) 

data set including a pseudo data point are less than test error from 

using the T data set, 

E[(yT+1 −𝑦𝑦�𝑇𝑇+1 )2 | 𝑦𝑦�𝑇𝑇+1, … , 𝑦𝑦1 ] ≤  E[(yT+1 −𝑦𝑦�𝑇𝑇+1 )2 

|𝑦𝑦𝑇𝑇 , … , 𝑦𝑦1].                                                                                                                (4) 

where 𝑦𝑦�𝑇𝑇+1 is a pseudo data point constructed from using the T 

data set. We can consider many candidates for this pseudo data 

point but in practice, the sample mean is the most appropriate 

based on the central limit theorem. This method provides better 

forecasting by just adding the pseudo data point, but its degree of 

improvement decreases as the data size increases.  

2.4 AkNN for Forecasting 
Nearest neighbor approaches can give a good approximation 

of a forecast but easily lead to a large variance due to using a 

small sample. From the forecast combination, we can obtain 

better forecasting accuracy by the regularization effect. Here, we 

propose a new forecasting method that blends subsample use and 

entire sample use, which is also associated with LSPD to forecast 

more accurately. By combining subsample use and entire sample 

use, we can avoid the large variance problem unlike the nearest 

neighbor approaches and the decrease of forecasting 

improvement of LSPD. 

Let X and y be random variables on probability spaces 

( 𝛺𝛺𝑋𝑋,𝛴𝛴𝑋𝑋, 𝜇𝜇𝑋𝑋)  and ( 𝛺𝛺𝑦𝑦 ,𝛴𝛴𝑦𝑦, 𝜇𝜇𝑦𝑦) , respectively, and consider a 

stochastic process (Xt, yt), for t = 1,…, T+1. Suppose that we want 

to forecast a future value at T+1. First, we try to find a nearest 

neighbor of the most recent cases to forecast this future value. 

Since the most recently estimated nearest neighbor varies 

depending on the forecasting location, its direct use or the average 

of the nearest neighbors over some interval may not give a stable 

result. To obtain a robust estimate of the nearest neighbor on a 

random basis, we construct bootstrap samples by b iterations and 

attach a pseudo value at T+1 to each sample for using LSPD. 

Subsequently, we obtain bootstrap samples {(Xj,t, yj,t)}, for j = 

1,…, b, t = 1,…, T+1, and for T+1, a pseudo value 𝑦𝑦�𝑗𝑗,𝑇𝑇+1 (sample 

mean up to T) is used instead of the actual 𝑦𝑦𝑇𝑇+1.  

Denote the size of the nearest neighbor as 𝑘𝑘𝑗𝑗  and obtain its 

estimate for a forecast at 𝑡𝑡 (𝑘𝑘𝑗𝑗 < 𝑡𝑡 ≤ 𝑇𝑇 + 1) by minimizing test 

error using LSPD: 

𝑘𝑘�𝑗𝑗 = arg min𝑘𝑘𝑗𝑗 E[(𝑦𝑦𝑗𝑗,𝑡𝑡 − 𝑦𝑦�𝑗𝑗,𝑡𝑡)2 | 

(𝑋𝑋𝑗𝑗,∥𝑡𝑡−𝑘𝑘𝑗𝑗∥, 𝑦𝑦𝑗𝑗,∥𝑡𝑡−𝑘𝑘𝑗𝑗∥), … , (𝑋𝑋𝑗𝑗,𝑡𝑡 , 𝑦𝑦�𝑗𝑗,𝑡𝑡)], 
 (5) 

where 𝑋𝑋𝑗𝑗,∥𝑡𝑡−𝑘𝑘𝑗𝑗∥ is a ‘𝑘𝑘𝑗𝑗 ’th nearest point to 𝑋𝑋𝑗𝑗,𝑡𝑡 . Let 𝑘𝑘𝑗𝑗,𝑜𝑜  be the 

corresponding nearest neighbor for d’ by linearly combining 𝑑𝑑 

and 𝐿𝐿 =∥ 𝑋𝑋𝑗𝑗,𝑇𝑇+1 − 𝑋𝑋𝑗𝑗,1 ∥, which acquires more stability than a 

simple nearest neighbor. Thus, 

𝑑𝑑′ =  𝛼𝛼𝑗𝑗𝑑𝑑 + �1 − 𝛼𝛼𝑗𝑗�𝐿𝐿,    (6) 

where 𝛼𝛼𝑗𝑗  is a new parameter that is a nonnegative weight of less 

than or equal to one. 
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We can obtain an optimal 𝛼𝛼�𝑗𝑗  by 

𝛼𝛼�𝑗𝑗 = arg min𝛼𝛼𝑗𝑗 E[(𝑦𝑦�𝑗𝑗,𝑇𝑇+1 − 𝑦𝑦�𝑗𝑗,𝑇𝑇+1)2 | 
(𝑋𝑋𝑗𝑗,𝑇𝑇+1, 𝑦𝑦�𝑗𝑗,𝑇𝑇+1), … , (𝑋𝑋𝑗𝑗,∥𝑇𝑇+1−𝑘𝑘𝑗𝑗,𝑜𝑜∥,𝑦𝑦𝑗𝑗,∥𝑇𝑇+1−𝑘𝑘𝑗𝑗,𝑜𝑜∥)].        (7) 

Since 𝛼𝛼�𝑗𝑗  is optimal for each bootstrap sample, we average over 

b, and then we obtain the bagged estimate  

𝛼𝛼�∗ = 1/𝑏𝑏∑ 𝛼𝛼�𝑗𝑗𝑏𝑏
𝑗𝑗=1 ,     (8)  

and by estimating 𝑘𝑘� (corresponding metric: 𝑑𝑑𝑜𝑜)  of the original T 

data set, we obtain 𝑘𝑘∗  for the forecast at T+1 from its 

corresponding metric 𝑑𝑑∗: 

d∗ =  α�∗do + (1 − α�∗)L.      (9) 

By using 𝑘𝑘�∗ as AkNN we can expect less variance than that 

from a simple nearest neighbor approach and overcome a 

drawback of LSPD. We summarize the above procedure in the 

following algorithmic form.  

Algorithm: Adjusted k-Nearest Neighbor for Forecasting 

Input: Training set: {(Xj,t, yj,t)} for j = 1,…, b, t = 1,…, T. Test 
instance: (XT+1, yT+1) 

          Parameters: 𝛼𝛼∗ and 𝑘𝑘∗. 
for 𝑗𝑗 ← 1 to b do 
      Construct a bootstrap set attached with a pseudo value 𝑦𝑦�𝑗𝑗,𝑇𝑇+1 

(sample mean up to T), and for each bootstrap set 
𝑘𝑘�𝑗𝑗 = arg min𝑘𝑘𝑗𝑗 E[(𝑦𝑦𝑗𝑗,𝑡𝑡 − 𝑦𝑦�𝑗𝑗,𝑡𝑡)2 | 

(𝑋𝑋𝑗𝑗,𝑡𝑡,𝑦𝑦�𝑗𝑗,𝑡𝑡), … , (𝑋𝑋𝑗𝑗,∥𝑡𝑡−𝑘𝑘𝑗𝑗∥,𝑦𝑦𝑗𝑗,∥𝑡𝑡−𝑘𝑘𝑗𝑗∥)] . 

  𝑑𝑑′ =  𝛼𝛼𝑗𝑗𝑑𝑑 + �1 − 𝛼𝛼𝑗𝑗�𝐿𝐿 
𝛼𝛼�𝑗𝑗 = arg min𝛼𝛼𝑗𝑗 E[(𝑦𝑦�𝑗𝑗,𝑇𝑇+1 − 𝑦𝑦�𝑗𝑗,𝑇𝑇+1)2 | 

(𝑋𝑋𝑗𝑗,𝑇𝑇+1,𝑦𝑦�𝑗𝑗,𝑇𝑇+1), … , (𝑋𝑋𝑗𝑗,∥𝑇𝑇+1−𝑘𝑘𝑗𝑗,𝑜𝑜∥,𝑦𝑦𝑗𝑗,∥𝑇𝑇+1−𝑘𝑘𝑗𝑗,𝑜𝑜∥)] 
end for 
𝛼𝛼�∗ ← 1/𝑏𝑏∑ 𝛼𝛼�𝑗𝑗𝑏𝑏

𝑗𝑗=1  
𝑘𝑘� ←  arg min𝑘𝑘 E[(𝑦𝑦𝑇𝑇 − 𝑦𝑦�𝑇𝑇)2 | 

(𝑋𝑋𝑇𝑇 ,𝑦𝑦�𝑇𝑇), … , (𝑋𝑋∥𝑇𝑇−𝑘𝑘∥,𝑦𝑦𝑗𝑗,∥𝑇𝑇−𝑘𝑘∥)] 
𝑑𝑑∗ =  𝛼𝛼�∗𝑑𝑑𝑜𝑜 + (1 − 𝛼𝛼�∗)𝐿𝐿 
Output: Test error = E[(𝑦𝑦 𝑇𝑇+1 − 𝑦𝑦�𝑇𝑇+1)2 

|(𝑋𝑋𝑇𝑇+1, 𝑦𝑦�𝑇𝑇+1), … , (𝑋𝑋∥𝑇𝑇+1−𝑘𝑘� ∗∥, 𝑦𝑦∥𝑇𝑇+1−𝑘𝑘� ∗∥)], 𝛼𝛼�∗, and 𝑘𝑘�∗. 

3. Numerical results
3.1 Simulation Testing 

 We used three functions to examine the generalization of our 

method; a linear function as the basic model, a polynomial 

function for the sensitivity to the curve, and sine and logarithm 

functions as the complicated data generating process 

Model 1 yi = 1 + 2𝑥𝑥𝑖𝑖  + ei 
Model 2 yi = 3 + 𝑥𝑥𝑖𝑖 - 𝑥𝑥𝑖𝑖2 + ei 
Model 3 yi = 3+ sin(5𝑥𝑥𝑖𝑖) + log(abs(𝑥𝑥𝑖𝑖)) + ei 

where 𝑥𝑥𝑖𝑖 is a random variable in [0,1] and is used for considering 

the distance in the kNN algorithm [20], and ei is an independent 

and identically distributed random variable orthogonal to  𝑥𝑥𝑖𝑖  and 

normally distributed with zero mean and unit variance.  

Samples of 100 and 300 were used for each simulation test, 

the number of Monte Carlo iterations was 100, and the number of 

bootstrap subsamples was 50 (of course, the forecast accuracy 

increased as the number of bootstraps increased).  

 Table 1 shows a test error comparison for the proposed 

method and some previously reported methods. In general, we 

can see that test errors were mainly large in the order of 

ordinary least squares OLS, LSPD, and AkNN (the proposed 

method), and the results of kNN and AkNN improved when the 

simulation function model was more curved (non-linear). 

Conversely, with Model 1, their improvements were slight since 

the linear form was the true model. kNN did not show low test 

error with any of the models and obtained the highest test error 

in the linear case (Model 1) and the lowest in the nonlinear case 

(Model 3), which is as expected considering the property of 

kNN using only a small portion of the data. LSPD consistently 

outperformed OLS but its improvement became smaller as the 

sample size increased. We can also see that the degree of 

reduced test error percentage compared with OLS decreased in 

the LSPD case but increased in the AkNN case as the sample 

size increased. Note that AkNN outperformed the results of 

ACT (residuals from fitting when the actual value at T+1 

assumed to be known) for Models 2 and 3.  

Table 1: Test error comparison 
Model 1 

N OLS kNN LSPD AkNN ACT 

100 1.1659 
(1.5871) 

1.4026 
(1.9129) 

1.1617 
(1.5763) 

1.1606 
(1.5627) 

1.0759 
(1.4651) 

300 1.1917 
(1.4245) 

1.4463 
(1.7806) 

1.1888 
(1.4171) 

1.1812 
(1.4053) 

1.1603 
(1.3875) 

Model 2 

100 1.1414 
(1.3443) 

1.1757 
(1.6202) 

1.1382 
(1.3407) 

1.0935 
(1.3179) 

1.0525 
(1.2361) 

300 1.0197 
(1.1774) 

1.2601 
(1.6819) 

1.0196 
(1.1772) 

0.9688 
(1.1653) 

0.9928 
(1.1460) 

Model 3 

100 1.5699 
(2.0800) 

1.2047 
(1.7929) 

1.5341 
(2.0421) 

1.0332 
(1.4432) 

1.4476 
(1.9194) 

300 1.4145 
(1.7883) 

1.605 
(2.1062) 

1.4063 
(1.7777) 

1.2922 
(1.6491) 

1.3767 
(1.7399) 

A linear model having an intercept term is used for all of the 
methods. Standard deviation is in parenthesis. 
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Figure 2 shows test error comparisons of AkNN with the 

other methods over 20 arbitrary trials. From Model 1 to Model 

3, the performance of AkNN was better than its counterpart in 

each case although it seemed to fluctuate, which implies that 

kNN’s influence increased as the simulation function became 

more curved. A similar phenomenon is evident in the middle 

charts of kNN vs. AkNN, reflecting a large variance caused by 

kNN.  

Figure 3 shows the histograms of 𝛼𝛼 in Equation (8) over 

100 trials. Overall, they show a bell-shaped distribution, which 

implies that 𝛼𝛼 can be used as a parameter in each particular data 

generating process. From Equation (9), we can see that the 

greater 𝛼𝛼  is, the more 𝑘𝑘�∗  depends on the nearest neighbor 𝑘𝑘� . 

From Models 1-3 shown in Table 2, 𝛼𝛼  becomes greater, 

reflecting that kNN’s influence increased. 

Table 2: Mean of Alpha 
N = 100 N = 300 

Model 1 0.2892 
(0.0460) 

0.2562 
(0.0471) 

Model 2 
0.2914 

(0.0650) 
0.2704 

(0.0535) 

Model 3 0.5543 
(0.1127) 

0.6888 
(0.1035) 

Standard deviation is in parenthesis. 
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Figure 3: Histogram of alpha (N = 300) 
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Figure 2: Test error comparison 
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Figure 3: (Continued) 

Figure 4 shows estimated lines from OLS and AkNN when both 

were compared with the original simulation function (y–e:  noise-

filtered y). We can see that AkNN uses a subsample on all the models 

and also that the end point, i.e. the forecast, of AkNN is closer to the 

end point of the original function than OLS in every case.   

(a) 

(b) 

(c) 
Figure 4: Comparison of estimated lines (N = 100): (a) Model 1, 

(b) Model 2, and (c) Model 3 

3.2 Empirical Study 
Ship accident is considered as a serious event because the 

emergency process is not quickly taken. Overall, the number of 

the ship accident is gradually increasing as shown Figure 5. 

There are some papers [21][22][23] studying the human factor 

of the ship accident, but there does not seem to be many studies 

on the forecasting the ship accident from a statistical point of 

view. Considering this point, we forecast the number of the one-

step ahead ship accident based on our proposed method 

(AkNN), and since the number of ship accident is varied 

according to the ship weight, we forecasted the number of the 

ship accident by each weight.  

We collected the 96 monthly data on the ship accident for 

each weight between Jan. 2000 and Dec. 2014 in South Korean 

waters, and the test errors from the last 40 observations were 

obtained and compared across the methods. The trends in 

Figure 5 seem to be moderate, but the degree of noise is quite 

high, and thus a nearest-neighbor approach will promise 

desirable forecasting performance.  

In Table 3, the test errors of AkNN were mainly less than 

the rival methods, OLS, kNN, and LSPD, and in some cases, 

it was less than the residuals obtained from ACT in some 

cases. kNN showed good forecasting performances compared 

to OLS in some cases, but in other cases its forecasting 

accuracy was very low, which reflects the high variance of the 

subsample use and affects its high standard deviation in the 

table.  
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 Figure 5: Monthly data on the ship accident by the ship weight 

Table 3: Test error comparison 

OLS kNN LSPD AkNN ACT 
0 ~ 20 ton 

1.5262 
(1.7041) 

0.8175 
(0.9437) 

1.4241 
(1.6316) 

0.6351 
(0.7625) 

1.3693 
(1.5309) 

20 ~ 100 ton 
1.4378 

(2.6069) 
1.1866 

(2.2792) 
1.3885 

(2.5711) 
0.9113 

(1.9972) 
1.2854 

(2.3332) 
100 ~ 500 ton 

1.2438 
(1.7872) 

1.8780 
(2.3136) 

1.2269 
(1.7737) 

1.1815 
(1.6965) 

1.1144 
(1.5890) 

500 ~ 1000 ton 
1.2887 

(1.8656) 
1.6362 

(3.2149) 
1.2721 

(1.8758) 
1.2081 

(2.0110) 
1.1478 

(1.6504) 
1000 ~ 5000 ton 

0.9328 
(1.5280) 

1.2482 
(1.7270) 

0.9287 
(1.5354) 

1.0282 
(1.4546) 

0.8326 
(1.3610) 

5000 ~ 10000 ton 
1.1982 

(2.1167) 
1.4769 

(2.4944) 
1.1829 

(2.1240) 
1.1867 

(2.5321) 
1.0723 

(1.8823) 
10000 ton ~ 

0.9638 
(1.1276) 

1.3406 
(1.2872) 

0.9324 
(1.0967) 

0.8467 
(0.9447) 

0.8632 
(1.0099) 

The number of the ship accident is standardized. Standard 
deviation is in parenthesis. 

Histograms of 𝛼𝛼 in the ship accident data is shown in Figure 6. 

Not as close to a bell shape as the simulation case, it shows a peak 

around the mean. The mean of alpha was 0.5820 and its standard 

deviation 0.1702.  

Figure 6: Histogram of alpha 

4. Conclusion
We proposed a new forecasting method by combining 

subsample use (kNN or rolling window) and entire sample use, 
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and parametrized a weight in a linear combination of both uses. 

We also added the LSPD method for better forecasting.  

We were able to obtain numerical results by simulation and 

ship accident data to support that our forecasting method reduced 

test error compared with other methods and also yielded less test 

error than the residual obtained from the fitting using the actual 

future value in many cases, which also reflects the difference 

between test error and training error. The histogram of the weight 

α showed a central tendency in a bell shape, which implies that it 

was usable as a parameter for the given data.  

The technique to find the AkNN in our proposed method can 

be applied to any forecasting model; for example, we could check 

that simple linear regression can give better forecasting results by 

adopting this technique. However, it still depends on the 

numerical method to find k-nearest neighbor, and so it needs a lot 

of time, which may be a restriction to apply out method to a large 

sample. 

The new parameter α seems to be convergent, but it may be 

affected by the entire sample size and the degree of noise. In 

future work, the properties of α should be analyzed further and, 

its more efficient use can be presented from these analyses.  
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