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Abstract : A functionally graded material (FGM) is a new type of advanced composite material that can be designed for use in 

thermal barrier coating and in heat shield applications owing to its high service performance that results from the improved 

mechanical and thermal properties of the material. An FGM is a nonhomogeneous material composed of various constituents and 

structures that gradually vary over the volume, and their mechanical properties vary smoothly from one surface to the other surface. 

The purpose of this study is to determine the effectiveness of two-scale modeling for FGM and to analyze its mechanical properties. 

Models of different volume fractions are developed with aluminum being used as the supporting matrix and silicon carbide being 

used as the particle inclusions. A geometry with three-point bending test is assumed. Through two-scale modeling, values 

representing the mechanical properties of the material are obtained at the macroscale level through a full model as well as at the 

microscale level through a representative volume element. The comparisons of the mechanical properties between macroscale and 

microscale. Therefore, the two-scale modeling presented herein is found to be useful and reliable for reducing numerical 

computational time. Based on the results, the stress value deviation becomes smaller as the volume fraction of the inclusion increases. 

In addition, the results provide evidence for the theory that an FGM has the advantage of smoother stress distributions. 
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1. Introduction 
As technology progresses, becoming increasingly complex with 

greater performance demands, the need for advanced materials of 

improved performance capacities is increasing. This need appears 

in many fields, encouraging engineers to search for new materials. 

To meet these demands, composite materials that have many 

advantages in terms of strength, stiffness, toughness, and high 

temperature resistance have been developed. 

A functionally graded material (FGM) is a modern composite 

material that can be designed for specific applications. An FGM is 

not a new material and in fact, there are naturally occurring FGMs. 

Bamboo, whose biological structure resembles that of composite 

materials, have been used in construction for a long time [1]. An 

FGM is a nonhomogeneous material that consists of various 

compositions and structures over volume and that has mechanical 

properties varying smoothly from one surface to another surface. 

For example, adhering a piece of metal to the upper part and a piece 

of ceramic to the lower part with a gradation phase located at the 

middle is more efficient for improving a performance of materials 

because both materials are able to preserve their individual 

properties while producing a continuous transition of mechanical 

characteristics across the three parts [2]. 

In traditional composites, the mechanical or thermal 

properties do not vary gradually. However, for FGMs, the 

presence of a gradation phase as a transitional phase, which is 

comprised of different constituents of various volume fractions 

and material properties, allow for a smooth and continuous 

transition in the mechanical properties. This continuous change, 

throughout the  perpendicular axis of one side to other side, 

results in FGMs being  superior than typical composite 

materials. Owing to the low or non-existence of drastic changes 

in material properties at any point, high stress concentrations 

are generally reduced. In addition, the presence of smooth 

transitional phases has the advantage of a smoother stress 
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distribution within the material, which can influence the 

reduction in thermal and residual stress values. 

Metal-ceramic FGMs, such as the Al-SiC based FGM, are 

able to withstand temperatures of 2000 K and able to avoid 

problems that originate from mismatches in the thermal 

properties [3][4]. Al-SiC FGMs can also be used in sub-marine 

applications such as in scuba diving cylinders [5]. For future 

applications, materials can be developed that combine FGM and 

carbon nanotube technologies.  

The effective thermal conductivities of an FGM were 

obtained through numerical calculation using a finite element 

method [6]. Shen [7] investigated the static and dynamic 

torsional behaviors of FGMs using a nonlocal strain gradient 

theory. FGMs consisting of Al/SiC showed an enhancement in 

hardness and wear resistance from the core to the surface [8]. 

As FGM use increases, it is becoming necessary to 

understand the mechanical behavior of FGMs to maintain safe 

operating conditions. Chi [9] investigated the mechanical 

characteristics using a constant value for the Poisson’s ratio and 

continuous values for the elastic modulus. This depends on the 

volume fraction of the particle inclusions, which is determined 

by an exponential, power-law, or sigmoid function under a 

transverse load in an FGM specimen. In another study [10], it 

was shown that changing the Poisson’s ratio had a very small 

influence on the finite element analysis results. 

In this study, we have suggested a two-scale modeling 

approach to be used in the numerical analysis of FGMs. The 

purposes of this study were to determine the effectiveness of 

two-scale modeling as well as to analyze the mechanical 

properties of FGMs. The study was carried out using 

commercial finite element code. The FGM studied herein 

consisted of an aluminum (Al) matrix with silicon carbide (SiC) 

as the particle inclusions, which was gradually distributed in the 

matrix. A simple three-point bending test was assumed. 

Through two-scale modeling, the mechanical behaviors were 

obtained at the macroscale using a full model as well as at the 

microscale using a representative volume element (RVE). 

Exchange information process between the both scales was 

present, which means that the values from the full model were 

localized to the RVE model and then, after some analyses, 

homogenized to the full model. The comparisons between both 

scales show satisfactory results. Thus, the two-scale modeling 

method suggested herein is found to be reliable and useful for 

reducing numerical computational times. The results provide 

evidence for the theory that FGMs have the advantage of 

smoother stress distributions. In addition, we have also shown a 

good agreement between the FEM models and theoretical 

equations with respect to the elastic modulus, bending stress, 

and strain values under bending conditions. 

 

2. Modeling of FGM 
For this study, we used aluminum (Al) as the matrix and 

silicon carbide (SiC) as the inclusion particle for the FGM. 

Table 1 provides the modulus of elasticity and Poisson’s ratio 

for Al and SiC. In general, the gradation or transitional phase is 

located toward the in between of Al and SiC of the FGM body. 

The FGM gradation from metal to ceramic with material 

volume fractions in the ceramic material structure is shown in 

Figure 1. 

 

Table 1: Selected mechanical properties of Al and SiC [11] 

 Al SiC 

Modulus elasticity (GPa) 70 427 
Poisson’s ratio 0.3 0.17 

 

  
Figure 1: FGM structure representation 

 

To perform a numerical analysis of the proposed FGM, a 

composite FGM was bounded by the metal at the upper part and 

the ceramic at the lower part. For the transitional phase, a 

material gradient of varying volume fractions is placed between 

the two boundaries, as shown in Figure 2 and detailed in Table 

2. The presence of a gradation phase results in an excellent 

FGM relative to typical composites because there is a smooth 

change in material properties at the gradation phase that will 

reduce a large stress concentration within the material. 

For the finite element analysis, which we performed using the 

commercial software Abaqus [12], a static two-dimensional 

analysis was chosen for modeling the composition and structure 

of the FGM. Then we assumed to make partition within the 

material layer by layer with different volume fraction of 
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ceramic gradually and each layer is estimated as solid and 

homogenous for section assignment through Abaqus program. 

Besides that, we also consider a static modeling in the 

simulation. Because the material consisted of different 

inclusions from one layer to another, different elastic moduli 

existed for each layer. An effective elastic modulus was 

required, which is discussed in the next section. 
 

 
Figure 2: Composition and dimensions of the FGM 

 

Table 2: Volume fraction percentage 
Vf Al/SiC 

A 1/0 

B 0.8/0.2 

C 0.6/0.4 

D 0.4/0.6 

E 0.3/0.7 

F 0/1 
 

To determine the mechanical properties of the FGM, we 

applied a three-point bending condition for the modeling, as 

shown in Figure 2. For a bending test, we made the overall 

structure of the material to resemble a rectangular beam with a 

length of 120 mm and a width of 60 mm. The lower supports 

are spaced 90 mm apart with a concentrated load of 100 N 

applied at the upper part, as shown in Figure 2. After modeling 

and performing some computations, we acquired certain 

mechanical properties of the overall FGM structure such as von 

Mises stress, maximum principal strain, and bending stress with 

respect to the center of the beam. 
 

3. Methodology 
3.1 Two-scales Modeling 

Determining the mechanical properties of composite 

materials through computational analyses requires long 

computational times, often resulting in higher costs. Two-scale 

modeling is a process that aims to overcome these issues by 

combining macroscale and microscale analyses within one 

process calculation to reduce the large computational times. 

Regarding FGM structures, which have different inclusion 

volume fractions from one side to the other, we assumed  

different layers depending on the volume fraction of ceramic. 

At each layer, especially at the gradation phase layers, the 

macroscale mechanical properties are transferred and localized 

to the microscale level. Then, the property values are sent back 

and compared to the macroscale values to obtain to validate and 

update results through the homogenized on stress and stiffness. 

The macroscale calculation is carried out by the full model, 

while the microscale calculation is carried out by the RVE model. 

Meshing in the full model is coarser than in the microscale RVE 

model, resulting in the RVE model being more accurate. The 

two-scale modeling approach exhibits an exchange of information 

between the two scales, as depicted in Figure 3. 
 

 
Figure 3: Two-scale analysis method 

 

Table 3: Number of nodes and elements 

 Total 

Nodes 140867 

Elements 144352 
 

The full model, which was fully meshed, was employed to 

determine the mechanical properties at the macroscale level. 

The number of nodes and elements for the macroscale model 

are given in Table 3. To transfer the mechanical properties 

from the full model to the microscale RVE model, we 

considered a localization strain field calculation and adopted 

periodic boundary conditions (PBCs) as the limits of the RVE 

model. This relation is given by Equation (1) [13] as follows: 
 

𝑢𝑢+ − 𝑢𝑢− = 𝜀𝜀𝑖𝑖𝑖𝑖(𝑥𝑥+ − 𝑥𝑥−)                                                     (1) 
 

where u is the microscale displacement value. The + and – 

exponents indicate opposite edges of the RVE. Then 𝜀𝜀𝑖𝑖𝑖𝑖 is the 
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average strain value at point (i, j). The displacement values 

from the full model were transferred to the RVE model as PBCs 

owing to the microstructure boundaries. Equation (2) shows 

the transformational displacement values from macroscale to 

microscale for two-dimensional modeling.  𝜀𝜀𝑖𝑖𝑖𝑖  represents the 

macroscale strains at node (i,j), and 𝐿𝐿1  and 𝐿𝐿2  are the edge 

lengths of the RVE in the x and y directions, respectively [13]. 

𝑢𝑢1(𝐿𝐿1,𝑥𝑥2) − 𝑢𝑢1(0, 𝑥𝑥2) =  𝜀𝜀11𝐿𝐿1   

𝑢𝑢2(𝐿𝐿1, 𝑥𝑥2) − 𝑢𝑢2(0,𝑥𝑥2) = 2𝜀𝜀12𝐿𝐿1   (2) 

𝑢𝑢1(𝑥𝑥1, 𝐿𝐿2) − 𝑢𝑢1(𝑥𝑥1, 0) = 2𝜀𝜀21𝐿𝐿2 

𝑢𝑢2(𝑥𝑥1,𝐿𝐿2) − 𝑢𝑢2(𝑥𝑥1, 0) =  𝜀𝜀22𝐿𝐿2  

Here, the RVE is defined as the smallest volume of material 

that can represent the material as a whole. It should consist of 

effective properties and sufficient information, whose size is 

small enough than macroscale but large enough than microscale. 

The RVE for the simulation presented herein, which employs 

aluminum as a matrix and silicon carbide as a particle, avoided 

the interface, interactions, inclusions shape, and contact 

between the matrix and particle. With the displacement values 

set as PBCs, the stress or strain average values were calculated 

as per Equation (3) and are sent back to the macroscale level in 

order to update the stress or strain at each element for the full 

model. Because every node at the macroscale level has different 

displacement values, a symmetrical perception cannot be 

applied when substituting the PBCs. In addition, the 

displacement values from the full model were substituted as 

PBCs at each edge node and element of the RVE.   

𝜎𝜎�𝑖𝑖𝑖𝑖 = 1
𝑣𝑣 ∫ 𝜎𝜎𝑖𝑖𝑖𝑖

𝑒𝑒 𝑑𝑑𝑣𝑣              (3) 

σ�ij is averaging the average stress tensor over the volume of 

the RVE, v denotes the volume region of the RVE and 𝜎𝜎𝑖𝑖𝑖𝑖 is the 

actual stress tensor of the RVE. 

3.2 Bending condition 
The FGM specimen for the analysis herein was oriented to 

resemble a rectangular beam placed under simple three-point 

bending. From this, we determined the mechanical properties of 

the material with respect to the shape of a beam. The effective 

elastic modulus Eeff is used by many researchers for FGM 

evaluation. In this paper, we used the formula for advanced 

composite materials given by Upadhyay et al. [14], which is 

shown in Equation (4). 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐸𝐸2 + 𝐾𝐾 �𝑣𝑣1
𝑣𝑣2
� 𝐸𝐸1   (4) 

𝑣𝑣1 + 𝑣𝑣2 = 1     (5) 

E1: Elastic modulus of ceramic 

E2: Elastic modulus of metal 

v1: Volume fraction of ceramic 

v2: Volume fraction of metal 

K is a constant given as: 

𝐾𝐾 = 𝐿𝐿𝑥𝑥2 + 𝑀𝑀𝑀𝑀 + 𝑁𝑁   (6) 

𝑥𝑥 = 𝑣𝑣1
1 3⁄ 𝑙𝑙𝑙𝑙 𝐸𝐸2

𝐸𝐸1
  (7) 

Determining the x value from Equation (7) allowed us to 

obtain K by substituting the L, M, and N constants with the 

values shown in Table 4 for those of the Al-SiC composite 

materials. L, M, and N are constants that vary depending on the 

type of the composite materials. The details are available in [14]. 

Taking into account the K value, we can generate an effective 

elastic modulus for FGMs that consists of different ceramic 

inclusions. 

Table 4: Constants L, M, and N for Al-SiC composite [13] 
L M N 

Al-SiC 1.912 1.57 0.486 

Additionally, and for comparison purposes, we adopted the 

theoretical equation proposed by Tamura (TTO model) to 

determine Eeff. This approach has been adopted by many 

researchers for FGM studies [15]. The TTO model assumes a 

parameter q that reflects the ratio of the stress to strain transfer 

to determine the elastic-plastic behavior of the two-constituents 

ceramic-metal composite material. This is given by Equation 

(8) and (9), 

𝑞𝑞 = 𝜎𝜎1−𝜎𝜎2
𝜀𝜀1−𝜀𝜀2

   (8) 

𝐸𝐸 =
�𝑉𝑉2𝐸𝐸2

𝑞𝑞+𝐸𝐸1
𝑞𝑞+𝐸𝐸2

+(1−𝑉𝑉2)𝐸𝐸1�

�𝑉𝑉2
𝑞𝑞+𝐸𝐸1
𝑞𝑞+𝐸𝐸2

+(1−𝑉𝑉2)�
  (9) 

where, 𝜎𝜎𝑖𝑖 and 𝜀𝜀𝑖𝑖 are, respectively, the average stress and strain 

of the constituents and 𝑣𝑣𝑖𝑖 is the volume fraction. 
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A bending moment exists for each bending condition. 

Therefore, in order to evaluate mechanical behaviors, flexural 

formulas were used to calculate the bending stress and strain. 

These are given in Equation (10), (11), and (12). 

M = 𝑃𝑃𝑃𝑃
4

       (10) 

𝜎𝜎𝑥𝑥𝑥𝑥 = 𝑀𝑀𝑀𝑀𝑖𝑖
𝐼𝐼

 (11) 

𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑥𝑥
𝐸𝐸𝑖𝑖

  (12) 

The transformed-section area is shown in Figure 4. Due to 

the presence of a neutral axis, y as a longitudinal point located 

at some distance above the neutral axis and I as the moment 

inertia, the bending stress and strain can be calculated. To 

evaluate the mechanical behavior, a distance path at the center 

of section that includes all different volume fractions was 

chosen. 

Figure 4: The transformed section area 

4. Result and Discussion
This study examined and compared the results of a 

macroscale and microscale evaluation of an FGM composite 

material to determine the validity and the accuracy of a two-

scale modeling approach. With regard to three-point bending, 

we compared the results from theoretical equations with the 

results from a numerical analysis performed using the software 

Abaqus to determine the accuracy of the mechanical behaviors 

within the model. The results were obtained through the 

thickness of material. At the macroscale level for the full model, 

which included a meshing process as part of the numerical 

analysis, we estimated mechanical properties such as von Mises 

stress, bending stress, and strain values. The von Mises stress 

was obtained as failure-state stress values. The bending stress 

was compared to the theoretical results. The strain values, 

which provide the intensity of deformation, were calculated. 

As can be seen in Figure 5, the von Mises stress, which were 

determined along the thickness direction through the center of 

the specimen, decrease for different SiC volume fractions in the 

material. A high stress value occurred at the initial distance at 

the pure metal part due to an existence of concentrated load at 

that location. Meanwhile, at the gradation parts, which consists 

of different volume fraction of inclusions, the stress values are 

continuously decreasing and are in good agreement with the 

characteristics of FGM. The gradation parts therefore exhibit 

smoother stress distributions, which can improve the strength, 

stiffness, and toughness of advanced composite materials. 

(a) 

(b) 
Figure 5: The variation of von Mises stress with respect to the 

distance measured from the neutral axis for (a) general 

distribution and (b) gradation part distribution 

As with the bending stress values, the stress deviation 

decreases as the inclusion ratio increases resulting in a smoother 

bending stress distribution, as shown in Figure 6. Moreover, 

the strain values also exhibit similar distribution patterns, as 

shown in Figure 7. The strain values decrease smoothly at the 

gradation parts. The fluctuations indicate that the stress 

decreases while passing through the SiC particles and increases 

when passing through the matrix. 

0

40

80

120

160

0 10 20 30 40 50 60

St
re

ss
, σ

 (M
Pa

) 

Distance (mm) 

gradation part 

0

2

4

6

8

0 10 20 30 40 50

St
re

ss
, σ

 (M
Pa

) 

Distance (mm) 



Nurul Fajriyah Fatoni ∙ Woo-Rim Park ∙ Oh-Heon Kwon 

Journal of the Korean Society of Marine Engineering, Vol. 41, No. 5, 2017. 6    436 

Figure 6: The variation of bending stress with respect to the distance 

from the neutral axis for the full model at the gradation parts 

Figure 7: The variation of bending strain with respect to the 

distance from the neutral axis for the full model 

For the microscale results, we used two types of RVE shapes 

(Figure 8); the simple square RVE, which includes one 

spherical particle surrounded by the matrix, and the edge square 

RVE, in which the particles are divided into four parts located 

at the edge of the square. To determine the microscale 

mechanical properties, distance pathing was chosen to run 

through the center part of simple square RVE and through the 

left side of the edge square RVE. 

(a) Simple square  (b) Edge square 
von Mises stress 

 

(c) Simple square   (d) Edge square 
Bending stress 

Figure 8: Microstructure contours of von Mises stress and 

bending stress by RVE analysis 

To demonstrate the RVE model, the microstructure contours 

of the von Mises stress and bending stress are shown Figure 8. 

As seen, for the von Mises stress, the higher stress values 

occurred at the particle region whereas the lower stress values 

occurred at the matrix region. For the bending stress, on the 

other hand, the higher stress occurred at the matrix located 

around the particle region. 

Then to determine the validity of the results, the comparison 

between both scales of von Mises stress and bending stress are 

shown, respectively, in Figure 9 and Figure 10. The example 

presented is for a 0.2 volume fraction of SiC inclusion with the 

remaining volume fraction being similar. We only evaluated the 

gradation parts of SiC inclusion volume fractions vf = 0.2, 0.4, 

0.6, and 0.7. This was done because of the greater advantage of 

its behavior and the smoother distribution of stress value. Based 

on the results of the two-scale modeling approach presented 

herein, we estimate that this method is reliable, effective, and 

useful for reducing, to some extent, the long times required in 

computational analysis. 

Figure 9: The von Mises stress for a SiC volume fraction 

inclusion of 0.2 

Figure 10: The bending stress for a SiC volume fraction 

inclusion of 0.2 
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In order to determine the accuracy of the results, a 

comparison between the finite element code and theory was 

performed. As an advanced composite material, an FGM 

consists of an Eeff that takes into account the influence of the 

material properties [14]-[16]. Therefore, acquiring Eeff, the 

volume fraction and the elastic modulus of each constituent 

phase is necessary. The theoretical Eeff found through Equation 

(4) ~ Equation (7) matches that of the finite element method to 

a satisfactory degree. On the other hand, the TTO model with a 

q average of 99.3 GPa shows lower elastic moduli results for vf 

= 0.6 and 0.7 of SiC inclusions. However, the TTO model 

exhibited close results for vf = 0.2 and 0.4. When SiC was added 

to the Al metal constituent, which has different binding 

properties, it seemed to cause a heterogeneous interface and 

elastic modulus distortion. The lower results of Eeff may result 

from the fact that the interface between the constituents was 

ignored. Figure 11 shows the comparison of Eeff from the 

theoretical equations and from finite element analysis. The 

detailed values can be seen in Table 5. Overall, these Eeff 

estimations seem to be in a good agreement. 

Figure 11: Effective elastic modulus of Al-SiC with volume 

fraction 

Table 5: omparison of effective elastic modulus 

vf Eeff by Eq (4) Eeff by TTO E by FEM 
0 70 70 66.295 

0.2 109.967 92.9518 94.33 
0.4 140.028 131.901 191.791 
0.6 299.726 190.8877 432.121 
0.7 411.6 230.7154 469.452 
1 427 427 393.343 

We used the effective elastic modulus above in the bending 

stress and bending strain equations shown in Equation (11) and 

Equation (12), for a neutral axis taken to be at 28.7 mm. The 

results match closely with those of the finite element method, as 

shown in Figure 12. Although both values exhibit good 

agreement with each other, it seems that there is a need to 

further improve the analytical calculation. From this, either the 

bending stress or bending strain would show a better result in 

tension and compression. 

(a) 

(b) 

Figure 12: (a) Bending stress and (b) Bending strain 

distribution 

5. Conclusion
This study shows the suitability of a two-scale modeling 

approach as an alternative method for reducing the long times 

required in the computational analysis of certain mechanical 

properties of FGMs. The macroscale results from a fully 

meshed model were compared to the microscale results from an 

RVE model. The results exhibited satisfactory similarity. 

Because the stress deviation decreased as the inclusion ratio 

increased, a smoother stress distribution occurred in the 

gradation parts. To obtain accurate and reliable mechanical 

properties at the gradation parts, the RVE model was used and 

presented in detail. 

In addition, the results from the theoretical calculation and 

those from the numerical analysis were compared to each other 

for determining the validity of the mechanical properties. It is 
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clearly seen that different effective elastic moduli exist 

depending on the volume fraction. Using two types of 

theoretical equations showed a good agreement when FEM 

results compared with theoretical results. Both the bending 

stress and bending strain calculated from the theoretical 

equations and determined from the FEM model also exhibited 

meaningful and acceptable results. 
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