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Abstract: This study investigated the effect of surface roughness of zinc oxide (ZnO) layer on the growth of polycrystalline Si layer 

via an Al-induced layer exchange process. It was found that the growth rate, grain size, crystallization fraction, and preferential 

orientation of the polycrystalline Si layer were strongly influenced by the surface roughness of the underlying ZnO layer. As the 

roughness of the ZnO surface increased, a higher growth rate (~40 min) and preferential Si (100) orientation were obtained because 

of the spatial concentration fluctuations in the Al-Si alloy, induced by the surface roughness of the underlying ZnO layer. 
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1. Introduction
In recent years, solar power generation has attracted attention as an 

important technology in addressing global energy challenges. 

However, solar power generation is expensive in comparison to 

conventional power generation methods, because of the high price of 

solar cell modules. Hence, many studies are underway to realize high 

quality polycrystalline silicon (poly-Si) films on low-cost substrates. 

The application of high-quality polycrystalline silicon thin films 

grown on large-area, low-cost substrates has attracted much attention 

because of their wide range of applications such as electronics, e.g., 

for thin-film transistors and solar cells [1][2]. A promising method of 

preparing a large-area poly-Si layer in a cost-effective manner is the 

Al-induced layer exchange (ALE) process. The ALE process is a 

special form of the Al-induced crystallization method, wherein an 

amorphous Si (α-Si)/Al/substrate is transformed into an Al/poly-

Si/substrate stack by annealing below the eutectic temperature 

(577 °C) of the Al/Si system [3]-[6]. Because of concentration 

gradient during annealing, Si atoms diffuse into the Al film through a 

thin natural aluminum oxide layer that acts as a permeable 

membrane between the initial Al surface and the α-Si layer[7]-[9]. 

As the diffusion of Si atoms continues, a poly-Si layer is formed 

through nucleation and growth in the Al film. The poly-Si layer 

thus obtained can be used as a seed layer for epitaxial 

growth[2][8]-[11] to produce a thick absorbing layer. The ALE 

process usually takes several hours, and despite numerous studies, 

controlling the grain size and primary direction of grains is not yet 

well understood[12]-[14]. 

In this study, the use of ZnO for the growth of a poly-Si 

layer via the ALE method was investigated. The study focused 

on the effect of ZnO surface roughness on the growth rate, 

grain size, and orientation of the poly Si layer.  

2. Experimental
Quartz glass was used as a substrate. It was sequentially 

washed with acetone, ethanol, and deionized water. A 100 nm 

thick ZnO film was deposited on the substrate at a rate of 1.6 

nm/s via DC magnetron sputtering at room temperature. ZnO 

layers with varying surface roughness were obtained by 

controlling the oxygen flow during the deposition. 

A 130 nm thick Al layer was deposited on the ZnO layer via 

thermal evaporation, and it was oxidized in air for 48 h. Finally, 

an α-Si layer of approximately 200 nm in thickness was 

deposited on the Al layer via radio-frequency magnetron 

sputtering. The deposition rate of α-Si was approximately 10 
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nm/min, chamber pressure was 1 × 10-3 Torr, and plasma 

power was 100 W. 

As shown in Figure 1, the as-fabricated sample has a layered 

structure:α-Si/Al/ZnO/glass. The layer-exchange process was 

performed at 577 °C for 3 h under Ar ambient at a flow rate of 1 
L/min. After annealing, the stacking sequence changed into 

Al/poly-Si/ZnO/glass (Figure 1(b)). The annealed samples were 

taken out of the furnace and the Al layer on the topmost surface 

was removed using a dilute HCl solution at 40 ° C for 5 min, and 

dilute HF solution for 30 s, at room temperature (Figure 1(c)). 

Figure 1: Schematic drawing of the fabrication process of 

poly-Si layer by the ZnO-assisted aluminum-induced layer 

exchange process: (a) amorphous Si/Al/ZnO/glass stacked 

sample (as-deposited sample); (b) Al/poly-Si/ZnO/glass 

stacked sample (layer exchanged sample); (c) poly 

Si/ZnO/glass (after etching of the Al layer on the surface). 

The surface roughness of the ZnO layer was evaluated by 

atomic force microscopy (AFM, Park systems XE-100). The 

morphological change of the poly-Si films during annealing 

was monitored in situ by optical microscopy. The sample 

surface was observed using Scanning electron microscopy 

(SEM; JEOL JSM-7000F). The sample surface was polished 

with a cross section polisher, and it was subjected to cross-

sectional SEM analysis. Energy-dispersive spectroscopy (EDS) 

was conducted to analyze the elemental distribution in the 

samples. Electron backscatter diffraction (EBSD) was 

performed to evaluate the orientation of grains; the results 

obtained were as follows: the average misorientation angle 

between the grains was approximately 6° and the electron beam 

incident angle was 70°, at an acceleration voltage of 20 kV. 

The beam spot size was 5.4 μm and the step size was 0.2 μm. 

3. Results and discussion
Figure 2 shows the AFM images of the ZnO layer surface. The 

root mean square (RMS) roughness of the ZnO layer was controlled 

by changing the oxygen flow during the deposition. The 

corresponding RMS roughness of the ZnO layer was a) 0.73 nm (O2 

flow = 0 sccm, Pchamber = 3 × 10-3 Torr); b) 1.42 nm (O2 flow = 8 

sccm, Pchamber = 5 × 10-3 Torr), and c) 2.4 nm (O2 flow = 10 sccm, 

Pchamber = 6 × 10-3 Torr). As shown in the inset of Figure 2, all 

samples were transparent. Previous studies have shown that an 

excess of oxygen increases the surface roughness of ZnO layer by 

restricting the surface migration length[15]. 

Figure 2: AFM images of the ZnO layers grown on glass 

substrates: (a) ZnO/glass (RMS: 0.73 nm); (b) ZnO/glass (RMS: 

1.43 nm); (a) ZnO/glass (RMS: 2.4 nm). The insets in the 

upper-left corner show pictures of each sample. 
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Using the aforementioned ZnO-coated substrates with 

varying ZnO layer surface roughness, thermal deposition of Al, 

deposition of α-Si by sputtering, and the layer exchange 

process were accomplished sequentially under the same 

experimental conditions. Three samples were prepared. 

Samples A, B, and C were prepared on ZnO layers with surface 

roughnesses of 0.73 nm, 1.42 nm, and 2.4 nm, respectively. 

The samples were simultaneously annealed at 577 °C. 

Schematic of the ALE process is shown in Figure 3. It shows the 

cross-sectional SEM (left-hand side) and corresponding EDS maps 

(right-hand side) of the as-deposited sample (Figure 3(a)) and the 

annealed sample (Figure 3(b)). Figure 3(a) shows the α-

Si/Al/ZnO/glass stack, while Figure 3 (b) shows an Al/poly-

Si/ZnO/glass stack. The layer-exchange process can be explained as 

follows: at the eutectic temperature of 577 °C, the Si (12.7 %)-

Al(87.3 %) alloy begins to melt and Si nuclei form in the Al layer 

[6][16]. As the melting continues, Si nuclei merge to form a poly-Si 

layer [11]. The nucleation speed (i.e., growth rate) is affected by 

various parameters, such as temperature, dissolution flux, and 

mobility of Si in the Al layer. At a given temperature, the dissolution 

flux is determined by the concentration of the Al–Si alloy. Ideally, a 

smooth, abrupt interface between the Al and Si layers will support 

uniform dissolution flux across the entire interface; a rough interface 

will induce spatial concentration fluctuations in the dissolution flux. 

The crystallization process of the poly-Si layer was observed 

during annealing. Figure 4 shows optical microscopy images, 

as seen from the underside, through the quartz substrate. The 

images of the samples were featureless at the beginning (0 min). 

In the case of Sample A, low-density, small-size nuclei 

emerged after 30 min of annealing, and dendritic growth 

followed, implying a very low growth rate[17]-[20]. In the case 

of the other two samples, the nuclei emerged much earlier 

(after ~15 min for Sample B and ~10 min for Sample C), and 

grew faster as well. The fact that dendritic growth did not occur 

in the case of Samples B and C indicates an increase in the 

growth rate. The high growth rate could be attributed to an 

increase in the amount of the Si dissolution, as the annealing 

temperature was the same for all samples.  

Here it would be appropriate to discuss, in detail, the correlation 

between the surface roughness of the ZnO layer and the growth rate. 

There have been several reports on the correlation between the Al-

oxide membrane and the growth of Si-nuclei. Klein et al. reported on 

the increase in growth rate with low quality Al-oxide membranes[21]. 

Furthermore, Kim et al. [9] carried out the ALE process with and 

without the Al-oxide membrane. With the Al-oxide membrane, they 

observed a higher growth rate. On the other hand, without the Al-

oxide membrane, but a poly Si layer was not obtained. Therefore, a 

possible explanation for the results in Figure 4 is that the surface 

roughness of the ZnO layer affects the dissolution flux of Si by 

changing the structural quality of the Al-oxide membrane. 

Figure 3: Cross-sectional SEM images (left) and EDS mapping 

images (right): (a) as-deposited sample with a stacking sequence of α-

Si/Al/ZnO/glass and (b) annealed (577 °C) sample, which has a 

stacking sequence of Al/poly Si/ZnO/glass. 

Figure 4: Optical micrographs obtained during the layer exchange 

process: (a) Sample A, (b) Sample B, and (c) Sample C. The black 

areas in the picture correspond to the poly-Si nuclei. 
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Figure 5 shows the variation in the crystallization fraction 

(CF) as a function of annealing time, showing the growth rate 

of the Si grains, quantitatively. The CF was quantified from the 

optical microscope images (Figure 4). Sample A revealed ~62% 

of CF (~20 min), while Sample B showed ~65% of CF (~60 

min). The largest CF (~84%), was achieved in the shortest time 

(~40 min), for Sample C. Note that the reported CF values 

were in the range of 80–90%, in results of annealed for a few 

hours or for a few weeks [22]-[24]. 

Figure 5: Annealing time dependency of the crystallization 

fraction. The crystallization rate of poly-Si is closely related to 

the roughness of the ZnO layer. 

Figure 6 shows the in-plane EBSD images. The black area 

represents α-Si, and the colored area represents poly-Si clusters. The 

crystallized area increased with the surface roughness of the ZnO 

layer. In addition, preferential orientation of the grains is found to be 

along the Si (100) direction. Note that as the crystallization fraction 

increases (i.e., as the growth rate increases), more clusters tend to be 

aligned in the Si (100) direction. 

The effect of crystallization conditions, such as substrate and 

temperature, on the preferential orientation of poly-Si has 

attracted a lot of attention. In case of dependence on the 

substrate, a preferential Si (111) orientation was observed on 

glass substrate [25], while a preferential Si (100) orientation 

was observed for growth on ZnO surface [26]. Oxidation of the 

Al layer prior to the deposition of the α-Si is known to be 

helpful in obtaining Si (100) orientation. Schneider et al. 

[26] have reported that the nucleation rate of clusters with  

an orientation close to the Si (100) direction is higher that of 

clusters with other orientations, due to the higher surface 

energy of the Si (100) plane. Therefore, we conclude that a 

high growth rate is responsible for the preferential Si (100) 

orientation of the clusters. 

Figure 6: In-plane EBSD images of (a) Sample A, (b) Sample 

B, and (c) Sample C. One can observe that the preferential 

orientation of poly-Si is closely related to the surface roughness 

of the ZnO layer. 

4. Summary and Conclusion
This study investigated the influence of the surface roughness of 

the ZnO layer on the ALE growth of poly-Si layer. It was found that 

both the growth rate and the preferential orientation are closely 

related to the surface roughness of the underlying ZnO layer. As the 

ZnO surface roughness increases, a higher growth rate due to spatial 

fluctuation of the dissolution flux was observed. This induces the 

preferential Si (100) orientation that is essential for the fabrication of 

a poly-Si thin film solar cell. 
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