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Abstract: In reliability analysis, it is quite common for the failure of any individual or item to be attributable to more than 

one cause. Moreover, observed data are often censored. Recently, progressive hybrid censoring schemes have become quite pop-

ular in life-testing problems and reliability analysis. However, a limitation of the progressive hybrid censoring scheme is that it 

cannot be applied when few failures occur before time T. Therefore, generalized progressive hybrid censoring schemes have 

been introduced. In this article, we derive the likelihood inference of the unknown parameters under the assumptions that the 

lifetime distributions of different causes are independent and exponentially distributed. We obtain the maximum likelihood esti-

mators of the unknown parameters in exact forms. Asymptotic confidence intervals are also proposed. Bayes estimates and 

credible intervals of the unknown parameters are obtained under the assumption of gamma priors on the unknown parameters. 

Different methods are compared using Monte Carlo simulations. One real data set is analyzed for illustrative purposes.

Keywords: Bayes estimate, Competing risk, Exponential distribution, Generalized progressive hybrid censoring, Maximum like-

lihood estimator

1. Introduction

In medical studies or reliability analysis, it is quite common that 

more than one cause or risk factor may be present at the same 

time. That is, a failure of test unit is often resulted by one of the 

several risk factors. This is what we call competing risks model, 

proposed by Cox [1]. In analyzing the competing risks model, it is 

assumed that data consists of a failure time and an indicator de-

noting the cause of failure. Recently, researchers are interested 

with one specific factor in the presence of other risk factors. It is 

also typically supposed that the different risk factors are in-

dependent so as to avoid the problem of model identifiability [2].

Based on competing risks model, a simple step-stress accel-

erated life testing problem under different censoring scheme was 

discussed in Balakrishnan and Han [3] and Han and 

Balakrishnan [4]. They constructed exact confidence intervals 

(CIs) and approximate CIs by exact distributions, asymptotic dis-

tributions, the parametric bootstrap method and the Bayesian 

posterior distribution, respectively. For the Lomax distribution, 

Cramer and Schmiedt [5] developed a competing risks model 

under progressively type II censoring scheme, and addressed the 

problem of optimal censoring schemes based on the Fisher in-

formation matrix. For the Weibull distribution, Bhattacharya et 

al. [6] developed a competing risks model under hybrid censor-

ing scheme. Mao et al. [7] developed competing risks model un-

der generalized type I hybrid censoring scheme, and constructed 

exact CIs and approximate CIs by exact distributions, asymptotic 

distributions, the parametric bootstrap method and the Bayesian 

posterior distribution, respectively.

If an experimenter desires to remove live experimental units at 

points other than the final termination point of the experiment, 

the Type I and Type II censoring schemes will not be of use. 

The conventional censoring schemes do not allow for units to be 

removed from the test at points other than the final termination 

point. Intermediate removal may be desirable when a compromise 

between reduced time of experimentation and the observation of 

at least some extreme lifetimes is sought, or when some of the 

surviving units in the experiment that are removed early on can 

be used for some other tests. Therefore, the loss of units at 

points other than the final termination point may be unavoidable, 

as in the case of accidental breakage of experimental units or 

loss of contact with individuals under experiment. These reasons 

and motivations lead reliability practitioners and theoreticians di-

rectly into the area of progressive censoring.

Progressive censoring scheme can be described as follows. 

Immediately following the first observed failure,  surviving 

units are removed from the test at random. Similarly, following 
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the second observed failure,  surviving units are removed 

from the test at random. This process continues until, immedi-

ately following the  th observed failure, all the remaining 

    ⋯    units are removed from the 

experiment. In this experiment, the progressive censoring scheme 

   ⋯  is pre-fixed. The resulting   ordered fail-

ure times, which we denote by     ,     , ⋯     , 

are referred to as progressive Type II censoring scheme.

The disadvantages of the progressive Type II censoring scheme 

is that the time of the experiment can be very long if the units 

are highly reliable. Because of that, Kundu and Joarder [8] and 

Childs et al. [9] proposed a progressive hybrid censoring scheme 

in the context of life-testing experiment in which  identical units 

are placed on experiment with progressive Type II censoring 

scheme  ⋯ , and the experiment is terminated at 

time minXm  m  nT, where ∈∞  and  ≤  ≤  

are fixed in advance, and      ≤      ≤⋯≤      

are the ordered failure times resulting from the experiment. Under 

progressive hybrid censoring scheme the time on experiment will 

be no more than  .

The disadvantages of the progressive hybrid censoring scheme 

is that there is a possibility that very few failures may occur be-

fore time  . In order to provide a guarantee in terms of the 

number of failures observed as well as time to complete the test, 

Cho et al. [10] propose generalized progressive hybrid censoring 

scheme. This is designed to fix the disadvantages inherent in the 

progressive hybrid censoring scheme. Cho et al. [11] discussed 

the entropy in the Weibull distribution for generalized pro-

gressive hybrid censoring. The detail description and its adven-

tages will be described in the next section.

In this paper, we consider independent identically distributed 

(iid) exponential competing risks model under generalized pro-

gressive hybrid censoring. The detail description of the model 

and maximum likelihood estimates (MLEs) for parameters are 

presented in Section 2. We obtain an estimate of the asymptotic 

confidence intervals (CIs) in Section 3. Bayes estimate and 

credible intervals are also obtained under the assumption of the 

gamma prior on the unknown parameters in Section 4. A real 

data set has been analyzed in Section 5. Furthermore, A Monte 

Carlo simulation of inferential procedures is carried out in 

Section 6 and finally we conclude the paper in Section 7.

2. Model, likelihood and MLEs
Suppose that  identical items are simultaneously put on a 

generalized progressive hybrid censoring lifetime test with com-

peting risks. There are two risk factors for the failure of items 

when the distributions of different factors are independently 

exponential. We also suppose that the lifetimes  ⋯ 

are statistically independent, here   min,   de-

notes the lifetime of the $i$th item under the th failure risk 

factor with cumulative density function (CDF) and probability 

density function (PDF) such as   exp  and 

  exp ,   . It is also easy to obtain the CDF 

and PDF of lifetime as

  
  



  exp





  







,

  
  



exp





  







.

It is well known that each failure observation is composed of 

failure lifetime and the cause of failure under the competing risks 

model. For convenience, let         ⋯     de-

scribe sorted progressive Type II censored lifetime of   items, 

and    ⋯  describe the indicator of risk factor corre-

sponding to the sequential failure times above. Here   , 

  ⋯ , denotes the failure of the th item caused by risk 

factor 1. Obviously,    means that factor 2 is responsible for 

the th failure. Based on our assumption, the joint PDF of life-

time and corresponding factor   is given by

  exp





  







   

Furthermore, generalized progressive hybrid censoring scheme 

is described as follows. The integer ∈⋯n is 

pre-fixed such that     and also  ⋯ are pre-fixed 

integers satisfying 
  



   . ∈∞  is a pre-fixed 

time point. At the time of first failure  of the remaining units 

are randomly removed. Similarly at the time of the second fail-

ure  of the remaining units are removed and so on. This 

process continues until, immediately following the terminated 

time    max    min    , all the remaining 

units are removed from the experiment. This generalized pro-

gressive hybrid censoring scheme modifies the progressive hy-

brid censoring scheme by allowing the experiment to continue 

beyond time   if very few failures had been observed up to 

time  . Under this scheme, the experimenter would ideally like 

to observe   failures, but is willing to accept a bare minimum 

of  failures. Let  denote the number of observed failures up 

to time  . In this scheme, we have one of the following types 

of observations;

Case I:     ⋯      , if       ,
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Case II :     ⋯    ⋯     , if 

       ,

Case III :     ⋯    ⋯     , if 

       .

Note that for case II,              and 

    ⋯     are not observed. For case III, 

             and     ⋯     are not 

observed. Based on the observable data, the likelihood function 

can be written as;

   




  

,

where   ,  
  



,   ,   
  



 , 

 
  



     for Case I,   ,  
  



 , 

  ,   
  



     
  for Case II, 

and   ,  
  



 ,    ,  
  



     

for Case III.

From likelihood function, we have



log
 


 and 

log
 


.

Therefore, we obtain the MLEs of  and  as

 


 and  


.

3. Confidence intervals

In this section, we propose different CIs of the unknown pa-

rameters of  and  for    and   . It is very diffi-

cult to obtain the CIs of  and  for    and   , and 

it is not pursued here.

The % CIs for  and  can be obtained from 

the usual asymptotic normality of the MLEs with   and 

  estimated from the inverse of the observed Fisher in-

formation matrix.

From the log-likelihood function, the second derivatives of 

log-likelihood function with respect to  and  are given by






log






, 




 log






,

and 

log
 .                              (1)

Let   denote the Fisher information matrix of the pa-

rameters  and . The Fisher information matrix is then ob-

tained by taking expectations of minus Equation (1). 

   






 log 


.

It follows that

 





,  







and     .

Observe that  
  



        and 

 
  



       .

Under some mild regularity conditions, 
  is approx-

imately bivariately normal with mean   and covariance 

matrix   .

However it is not easy to compute         for gen-

eral , because      is a sum of  independent but not iden-

tically distributed exponential random variables. Therefore, for 

   and   , we estimate   by  
 .

A simpler and equally valid procedure is to use the approx-

imation


 ∼

  ,

where 
 














 

 




.

Therefore, the % normal approximate CIs for  

and  are

















 

and 
















,

where  is the percentile of the standard normal dis-

tribution with right-tail probability .

4. Bayes inference

In this section we approach the problem from the Bayesian 

point of view. It is assumed that the parameters  and  are in-

dependent and follow the gamma() and gamma() prior 

distributions with   ,   ,    and   . Therefore, 

the joint prior distribution of  and  is of the form:

∝

  

  


 .

Based on the above joint prior distribution, the joint density 

of the ,  and  can be written as follows.

∝

  


  


 


 
.
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Then, the posterior distribution of  and , given , is 

obtained as:

∝




∞




∞




.

Now, we obtain Bayes estimates of  and  against the 

squared error loss (SEL) and linex loss (LL) functions when 

the prior distribution is taken to be  . The Bayes es-

timate of  against the SEL function is respectively ob-

tained as,

    


 




∞



  


 




 


Similary, we can obtain the Bayes estimate of   against 

the SEL function. Interestingly, when the non-informative pri-

ors         , the Bayes estimators under SEL 

function coincide with the corresponding MLEs.

Next, the Bayes estimate of  against the LL function is 

respectively obtained as,

  


log

,

where
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Similary, we can the Bayes estimate of  against the LL 

function.

Also, the credible intervals for  and  can be obtained 

using the posterior distributions of  and . Note that 

    and     follows  dis-

tribution with    and    degrees of freedom 

provided    and    are positive integer. 

Therefore, % credible interval (BA) for  and  

can be obtained as








    




   


 and








    




   


, respectively for 

   and    . Here, 
   and 

   

denote the upper and lower th percentile points of a  

distribution. Note that if   and   are not integer 

values then gamma distribution can be used to construct the 

credible intervals for  and  . If no prior information is 

available, then non-informative priors can be used to compute 

the credible intervals for  and  .

5. Illustrative example

For illustrative purposes, we present here a real data analysis 

using the proposed methods. The following data set are some 

small vessel electronic appliances exposed to the automatic test 

machine (Lawless, [12]). This data set was analyzed by Mao et 

al. [7]. There were 18 risk factors for the failure of the 

appliances. Among the 18 failure modes, only failure mode 9 

appeared the most times, to be accurate 17 times. Obviously, it 

was desirable to consider inference of failure mode 9 in the 

presence of other modes including 17 failure risks modes and 

censoring mode. Considering this, let us express the $i$th fail-

ure appliance due to failure mode 9 with   , and then 

   denotes failure caused by other failure modes. And the 

ordered failure lifetimes and corresponding failure factors were 

presented at the following: (11,0), (35,0), (49,0), (170,0), 

(329,0), (381,0), (708,0), (958,0), (1062,0), (1167,1), (1594,0), 

(1925,1), (1990,1), (2223,1), (2327,0), (2400,1), (2451,0), 

(2471,1), (2551,1), (2565,0), (2568,1), (2694,1), (2702,0), 

(2761,0), (2831,0), (3034,1), (3059,0), (3112,1), (3214,1), 

(3478,1), (3504,1), (4329,1), (6367,0), (6976,1), (7846,1), 

(13403,0).

From the above sample, we created an artificial data by pro-

gressive Type II censored sample. We have    and we 

took   ,      and    for   ⋯. 

Thus, the progressive Type II censored sample is (11,0), 

(170,0), (329,0), (708,0), (1062,0), (1167,1), (1594,0), (1925,1), 

(2223,1), (2327,0), (2400,1), (2451,0), (2471,1), (2551,1), 

(2565,0), (2568,1), (2694,1), (2702,0), (2761,0), (2831,0), 

(3034,1), (3059,0), (3112,1), (3214,1), (3478,1), (3504,1), 

(4329,1), (6976,1). In this example, we take case I (   

and   ), case II (   and   ), and case III 

(   and   ).

Table 1 presents inferences of  and , and the 95% CIs 

and credible intervals for  and  for values of case I, II, and 

III of generalized progressive hybrid censoring schemes.
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Sch. 

 



MLE SEL LL MLE SEL LL

I 3 ×  ×  ×  7 ×  ×  × 

II 2 ×  ×  ×  6 ×  ×  × 

III 15 ×  ×  ×  13 ×  ×  × 

Sch.  NA BA  NA BA

I 3 × ×  × ×  7 × ×  × × 

II 2 × ×  × ×  6 × ×  × × 

III 15 × ×  × ×  13 × ×  × × 

Table 1: The MLEs, Bayes estimates and confidence/credible intervals of  and  for example

6. Simulation results

In this section, a Monte Carlo simulation study is conducted 

to compare the performance of different estimators. We consid-

er different ,  , , and  . We have used three different 

progressive Type II censored sampling schemes, namely; 

Scheme I :     and    for ≠ . Scheme II : 

    and    for ≠. Scheme III : 

    and    for ≠ .

All Bayes estimates are computed with respect to the gamma 

prior distribution. This corresponds to the case when hyper-

parameters take values of         . Bayes estimates 

of parameters are derived with respect to three different loss func-

tions, SEL and LL function. Under LL associated estimates are 

obtained for   . Finally, different schemes have been taken in-

to consideration to compute MSE values of all estimates, and 

these values are tabulated in Table 2. We also compute the aver-

age confidence/credible lengths and the corresponding coverage 

percentages. The results are presented in Table 3. The correspond-

ing coverage percentages are reported within brackets.

From Table 2, the following general observations can be 

made. The MSEs of both  and  decrease as sample size  

increases. For fixed sample size, the MSEs of both  and  

decrease generally as the number of progressive censored sam-

ples   decreases. For Fixed sample and progressive censoring 

data size, the MSEs of both  and  decrease generally as 

the time   increases. For fixed time  , sample and pro-

gressive censoring data size, the MSEs of both  and  de-

crease generally as the number of guarantee sample size  

increase. It is also observed that the MLEs for schemes 1 and 

2 behave quite similarly in terms of MSEs of both  and . 

The MLEs for scheme 3 have smaller MSEs of both  and 

 than the corresponding MLEs for the other two schemes.

From Table 3, the following general observations can be 

made. The confidence/credible lengths decrease as sample size

 increase. For fixed sample size, the confidence/credible 

lengths of both  and  decrease generally as the number of 

progressive censored samples   decrease. For fixed sample 

and progressive censoring data size, the confidence/credible 

lengths of both  and  decrease generally as the time   

increases. For fixed time  , sample and progressive censoring 

data size, the confidence/credible lengths of both  and  

decrease generally as the number of guarantee sample size  

increase. For most of the methods, scheme 2 and scheme 3 be-

have very similarly although the confidence/credible intervals 

of both  and  for scheme 3 are slightly shorter than 

scheme 2. The confidence/credible intervals for scheme 1 have 

longer than the other two schemes.

It is observed that the Bayes credible intervals (BA) with re-

spect to the gamma prior work quite well for all sample sizes 

and for all the schemes. In most of the cases, the coverage 

percentages are quite close to the nominal level. The asymp-

totic CIs (NA) do not work well. It can not maintain the nomi-

nal level even when ,   and   is large.

7. Conclusions
In this paper, we consider iid exponential competing risks 

model under generalized progressive hybrid censoring. We 

obtain the exact inference for the parameters. We also obtain 

an estimate of the asymptotic CIs. Moreover, Bayes estimate 

and credible intervals are also obtained under the assumption 

of the gamma prior on the unknown parameters under two 

types loss functions. A real data set and a numerical simu-

lation have been conducted to evaluate the performances of 

estimators in this article. The results show that Bayes method 

outperforms generally approximate method. Although we 

have assumed that the lifetime distributions are exponential 

but most of the methods can be extended for other dis-

tributions also, like Weibull, log-normal and rayleigh 

distribution.
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n m k

S

c

h.

 

      T=0.5 T=1.0
MLE SEL LL MLE SEL LL MLE SEL LL MLE SEL LL

20

18

3
I 0.095 0.077 0.064 0.060 0.053 0.046 0.052 0.049 0.039 0.042 0.041 0.035 
II 0.085 0.071 0.059 0.057 0.052 0.045 0.050 0.047 0.038 0.041 0.040 0.034 
III 0.081 0.067 0.056 0.053 0.048 0.042 0.049 0.046 0.038 0.039 0.038 0.033 

5
I 0.089 0.074 0.061 0.060 0.053 0.046 0.051 0.048 0.039 0.042 0.041 0.035 
II 0.084 0.070 0.058 0.057 0.052 0.045 0.048 0.045 0.037 0.041 0.040 0.034 
III 0.080 0.067 0.056 0.053 0.048 0.042 0.048 0.045 0.037 0.039 0.038 0.033 

14

3
I 0.113 0.085 0.068 0.084 0.071 0.059 0.069 0.067 0.050 0.049 0.048 0.039 
II 0.105 0.085 0.068 0.074 0.064 0.053 0.061 0.059 0.047 0.046 0.045 0.038 
III 0.087 0.072 0.060 0.064 0.056 0.048 0.053 0.050 0.041 0.040 0.039 0.033 

5
I 0.106 0.081 0.065 0.084 0.071 0.059 0.064 0.063 0.047 0.049 0.048 0.039 
II 0.102 0.082 0.066 0.074 0.064 0.053 0.060 0.058 0.046 0.046 0.045 0.038 
III 0.084 0.069 0.058 0.064 0.056 0.048 0.052 0.050 0.041 0.040 0.039 0.033 

30

26

6
I 0.062 0.055 0.048 0.044 0.041 0.037 0.041 0.038 0.033 0.027 0.026 0.023 
II 0.059 0.053 0.046 0.041 0.038 0.035 0.039 0.036 0.032 0.025 0.025 0.022 
III 0.057 0.051 0.045 0.037 0.035 0.032 0.038 0.035 0.031 0.023 0.022 0.020 

8
I 0.060 0.053 0.046 0.044 0.041 0.037 0.039 0.036 0.031 0.027 0.026 0.023 
II 0.057 0.051 0.045 0.041 0.038 0.035 0.039 0.036 0.032 0.025 0.025 0.022 
III 0.055 0.049 0.043 0.037 0.035 0.032 0.038 0.035 0.031 0.023 0.022 0.020 

22

6
I 0.080 0.069 0.058 0.050 0.047 0.041 0.050 0.048 0.040 0.033 0.032 0.028 
II 0.067 0.060 0.051 0.046 0.043 0.038 0.042 0.040 0.034 0.031 0.031 0.027 
III 0.055 0.049 0.043 0.039 0.036 0.033 0.036 0.034 0.030 0.027 0.026 0.024 

8
I 0.078 0.067 0.057 0.050 0.047 0.041 0.048 0.046 0.038 0.033 0.032 0.028 
II 0.066 0.059 0.051 0.046 0.043 0.038 0.041 0.040 0.034 0.031 0.031 0.027 
III 0.054 0.048 0.042 0.039 0.036 0.033 0.035 0.034 0.029 0.027 0.026 0.024 

Table 2: The average confidence/credible length and the corresponding coverage percentage of  and 

n m k

S

c

h.

 

           
AL BL AL BL AL BL AL BL

length CP length CP length CP length CP length CP length CP length CP length CP

20

18

3
I 1.13 89.6 1.08 96.0 .91 92.0 .89 96.2 .92 91.3 .93 98.0 .75 91.8 .75 95.2
II 1.09 88.9 1.05 95.2 .90 93.3 .87 96.2 .88 87.2 .88 97.7 .73 91.9 .73 94.9
III 1.08 88.9 1.04 95.0 .87 92.7 .85 96.0 .87 87.0 .88 97.5 .71 91.3 .71 94.6

5
I 1.14 91.8 1.09 96.4 .91 92.0 .89 96.2 .92 91.8 .92 98.1 .75 91.8 .75 95.2
II 1.09 90.5 1.05 95.9 .90 93.3 .87 96.2 .88 88.9 .88 97.7 .73 91.9 .73 94.9
III 1.08 90.5 1.04 95.5 .87 92.7 .85 96.0 .87 88.7 .88 97.4 .71 91.3 .71 94.6

14

3
I 1.26 88.7 1.20 97.7 1.04 92.3 1.00 95.7 1.08 98.1 1.07 97.2 .85 91.2 .85 97.3
II 1.15 89.0 1.10 95.4 .99 93.3 .95 95.9 .96 91.3 .95 97.2 .81 92.6 .81 96.9
III 1.07 88.4 1.03 95.1 .88 92.4 .85 95.4 .90 89.1 .90 97.4 .72 92.0 .72 94.9

5
I 1.26 90.6 1.19 97.6 1.04 92.3 1.00 95.7 1.05 95.2 1.04 97.4 .85 91.2 .85 97.3
II 1.15 89.9 1.10 96.0 .99 93.3 .95 95.9 .96 91.8 .95 97.1 .81 92.6 .81 96.9
III .08 89.4 1.04 95.7 .88 92.4 .85 95.4 .90 89.8 .90 97.5 .72 92.0 .72 94.9

30

26

6
I .95 92.0 .92 96.0 .76 92.4 .74 94.6 .76 91.9 .76 97.2 .61 91.8 .61 95.8
II .90 93.3 .88 95.4 .74 93.5 .73 95.1 .72 88.2 .72 95.6 .59 91.9 .59 94.5
III .89 93.0 .87 95.3 .71 93.3 .70 95.1 .71 88.0 .71 95.6 .57 91.4 .57 94.9

8
I .95 93.1 .92 96.3 .76 92.4 .74 94.6 .76 92.1 .76 96.3 .61 91.8 .61 95.8
II .90 93.5 .88 95.6 .74 93.5 .73 95.1 .71 88.4 .72 95.7 .59 91.9 .59 94.5
III .89 93.3 .87 95.6 .71 93.3 .70 95.1 .71 88.2 .71 95.6 .57 91.4 .57 94.9

22

6
I 1.03 92.5 1.00 95.9 .84 94.4 .82 95.0 .84 91.7 .84 97.0 .67 91.0 .67 94.8
II .93 93.0 .90 94.6 .80 94.3 .78 94.8 .75 90.2 .75 95.8 .64 92.2 .64 95.1
III .89 93.6 .87 95.4 .72 93.3 .71 95.1 .72 89.7 .72 96.4 .58 92.0 .58 94.3

8
I 1.04 93.0 1.00 95.4 .84 94.4 .82 95.0 .84 90.9 .83 95.6 .67 91.0 .67 94.8
II .94 93.9 .91 94.9 .80 94.3 .78 94.8 .75 90.1 .75 95.5 .64 92.2 .64 95.1
III .89 94.5 .87 95.5 .72 93.3 .71 95.1 .72 89.6 .72 96.0 .58 92.0 .58 94.3

Table 3: The MSEs and average biases of all estimators of  and .
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