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Abstract: The purpose of this paper is to present the basic mathematical modeling of a hexacopter, which could be used to de-

velop proper methods for stabilization and trajectory control. A hexacopter consists of six rotors with three pairs of counter-ro-

tating fixed-pitch blades. This mechanism is an under-actuated, dynamically unstable, six-degrees-of-freedom system. The whole 

motion of this object consists of translational and rotational motion in three dimensions, where the translational motion is cre-

ated by changing the direction and magnitude of the upward propeller thrust. The hexacopter is controlled by adjusting the an-

gular velocities of the rotors, which are spun by electric motors. It is assumed to be a rigid body; thus, the differential equa-

tion of the hexacopter dynamics can be derived from the Newton–Euler equation. The Euler-angle parametrization of the 

three-dimensional rotations contains singular points in the coordinate space that can cause failure of both the dynamical model 

and control. In order to avoid singularities, the rotations of the hexacopter are parametrized in terms of quaternions. This 

choice has been made considering the linearity of the quaternion formulation and their stability and efficiency. Further, control 

simulation of a hexacopter applying cascaded-PID control is also presented in this paper.

Keywords: Hexacopter, Newton-Euler model, Inertial moment, Gyroscopic, Cascaded PIDs.

1. Introduction

Currently, the design of multicopters with more than four 

rotors, i.e., a hexacopter and an octocopter, is developing 

thanks to increases in the total payload and the possibility of 

managing one or more engine failures [1][5][6]. In particular, 

the advantages of more rotors include more power, more lift, 

and greater safety in the case where one or two motors fail 

during flying. 

In this work, a hexacopter is considered, whose six rotors 

are located at the vertices of a hexagon and are equidistant 

from the center of gravity; moreover, the propulsion system 

consists of three pairs of counter-rotating fixed-pitch 

propellers. In order to characterize the dynamic aircraft behav-

ior, a mathematical model of the hexacopter is presented by 

considering all of its external and internal influences. It is well 

known that, assuming the hexacopter is a rigid body, the dif-

ferential equations describing its dynamic behavior can be de-

rived from the Newton–Euler model equation, leading to 

equivalent mathematical models. Usually, the Euler-angle pa-

rameterization is used to describe the rotation of the hexa-

copter, but this formulation suffers from the presence of sin-

gular points in the coordinate space—the so-called gimbal lock—

that can cause failure of both the dynamical model and UAV 

control. These singularities are not present if the three-dimen-

sional rotations are parameterized in terms of quaternions [2], 

[3]. The strength of the quaternions depends on the linearity of 

their formulation, on the easiness of their algebraic structure, 

and overall, on their stability and efficiency. Thus, the qua-

ternion parameterization is proposed in this paper to obtain a 

mathematical model of a hexacopter, which allows for a more 

efficient and fast algorithm implementation for control.

The remainder of this paper is organized as follows. Section 

2 presents the coordination system for hexacopter modeling. 

Section 3 presents the mathematical model of the hexacopter. 

Control simulation results are given in Section 4, and Section 

5 concludes this work.

2. The modeling coordination system and 

calculus

2.1 Modeling coordination

To keep track of the hexacopter, two different coordinate 

frames are used to represent the position and orientation in 

three dimensions—the earth frame (Oxyz) and the body frame 
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(), as seen in Figure 1. The earth frame is a fixed 

frame used as an unmoving reference. For example, if the user 

wants to define a path that the hexacopter should follow, then 

that path would be represented in the earth frame. The body 

frame axes are aligned with the sensors, which is convenient 

when reading sensor data and controlling the angular ori-

entation (attitude). As seen in Figure 1, the body frame in this 

configuration is defined as having the X axis lie between the 

arms of motor 1 and motor 6, the Y axis lie along the arms of 

motor 2, and the Z axis pointing upward. The value represents 

the distance from a given motor to the axis of rotation and 

should be the same for every motor. The x axis is assumed to 

be the positive forward direction for vehicle movement. For 

clarity, the rotation conventions are shown in Figure 2.

Figure 1: System coordination

Figure 2: Axis labels and conventions

The angular position of the body frame with respect to the 

inertial one is usually defined by means of the Euler angles: 

the roll , pitch   and yaw   angles. According to the aero-

space rotation sequence, the rotation of an aircraft is described 

as a rotation about the z axis (yaw) and then a rotation about 

the y axis (pitch) followed by a rotation about the x axis 

(roll). Each rotation is made on the basis of a right-handed 

system and in a single plane. 

For the sake of simplicity, let us denote the inertial position 

vector and the Euler angle vector by means of   and  , 

respectively.

 













  













                               (1)

In the body frame, the linear velocities are determined by 

  and the angular velocities by , respectively.

 

















  














                            (2)

Using these three rotations, a composite rotation matrix can be 

created, which can transform the motion of the aircraft from the 

body frame to a new reference frame. The resulting rotation ma-

trix transforms the rotations from the body frame with respect to 

the inertial frame and can be found using matrix multiplication. 

In Equation (3), s and c represent the sine and cosine functions, 

respectively;   is the rotation matrix that transforms the rota-

tions from the body frame to the inertial frame.

  











   

    

  



 

     (3)

As a consequence, the transformation matrix from the inertial 

frame to the body frame is      .

As shown in [1], the transformation matrix for the angular 

velocities from the inertial frame to the body frame is .

 










  
  
  

                          (4)

Further, the transformation matrix from the body frame to the 

inertial frame is 
.


 











  
  
  

                      (5)

Then the transformation laws are

  
 and   

                            (6)

2.2 Quaternions

In the above section, it is pointed out that the rotation of a 

rigid body in space could be represented by Euler angles; 
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however, the singularity of the transformation laws in Equation 

(6) leads to the adoption of a new parameterization—the qua-

ternion—with the aim of describing the orientation of the air-

craft with respect to the fixed earth frame [2][3].

The quaternion representation is based on Euler’s rotation 

theorem, which states that any rigid body displacement, where 

a point is fixed, is equivalent to a rotation. Therefore, if   is 

the rotation angle about the unit vector  , it is possible to de-

fine a quaternion as

  cos


 sin


                              (7)

whose components describe the three-degree orientation. 

Unlike the Euler angles, quaternion rotations do not require 

a set of predefined rotation axes because they can change 

its single axis continuously. Owing to the fact that the 

method of rotation around an arbitrary direction has only 

one axis of rotation, the degrees of freedom cannot be lost; 

therefore, a gimbal lock cannot occur. Otherwise, a quatern-

ion can be defined by four components describing a 

three-dimensional rotation. Thus, the quaternion elements 

must satisfy a constraint equation called the normality con-

dition, i.e.,

 



















                                           (8)


 

 
 

                                     (9)

where    is assumed for the sake of readability. The 

transformation of the translational velocity representation from 

the body frame to the inertial one can be expressed by

                                              (10)

where  is the following matrix:

 













 
 

 
    

  
 

 
 

  

    
 

 
 



 (11)

As for the matrix R, Q is orthogonal; therefore,     . 

For the angular velocities, the involved transformation can be 

written as

                                                (12)

where the matrix S depends on quaternion components as fol-

lows:

  













  

  

  

  

                            (13)

On the other hand, it is possible to consider the trans-

formation matrix depending on the angular velocity compo-

nents, thereby obtaining the link between quaternions and their 

derivatives with respect to time, which are



















 












   
   

   
   



















                           (14)

In conclusion, it is remarked that the advantage of consider-

ing the quaternion reference is twofold because it avoids crit-

ical positions, and, thanks to the linearity of the coefficients of 

the transformation matrix, it is also numerically more efficient 

and stable compared to traditional rotation formulation.

 2.3 Mass moment of inertia matrix

The mass moment of inertia of an object (J) plays a similar 

role in the rotational motion to the role that mass plays in 

translational motion: the mass moment of inertia determines 

how the rotational velocity is affected by the applied torque. 

This of course depends not only on the mass of the object but 

also on how the mass is distributed around the rotation axis. It 

is important to note here that the hexacopter is assumed to be 

perfectly symmetric about the x y and z axes and to have its 

center of mass at the geometric center of the arms. With these 

assumptions, the matrix  in Equation (15) becomes a diago-

nal matrix (note that this is related to our choice of the x- and 

y-axis positions). The   and  terms are also taken to be 

identical owing to this symmetry. 

 











  

  

  

                                    (15)

2.3 Thrust

The motors' thrust is the driving force behind all hexacopter 

maneuvers and is thus integral to control design and 

simulation. The thrust, TS, provided by a single motor/propeller 

system can be calculated as Equation (16)

  



                                    (16)

where  is the lumped parameter thrust coefficient that per-

tains to the individual motor/prop system, and   is the an-
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gular velocity of the rotor. The total thrust T provided by the 

motor/prop system is a force perpendicular to the X–Y plane 

of the body frame in the positive Z direction and is for-

mulated by Equation (17)

  
  





                                     (17)

2.4 Torque

In theory, an increase/decrease in the speed of the six rotors in-

dependently will create torques around the x y and z axes, thereby 

creating roll, pitch, and yaw rotations. The torque is force multi-

plied by a distance, and the rotors will affect the total rotation 

about a certain axis differently, depending on the distance from 

the center of gravity. Figure 3 shows the lengths and angles of 

the arms to the relative distance from the center of gravity, which 

is the distance from the rotor to the axis of rotation.

Figure 3: Hexacopter rotor distances to center of gravity

By decreasing  and increasing , a positive 

roll moment is produced as Equation (18)

  
 

  




 
 

 
          (18)

By decreasing  and increasing , a positive roll 

moment is produced as Equation (19).

  




 
 

 
                      (19)

In order to understand the effect of the motor on the yaw, 

the torque force of the motor/prop system must also be de-

termined and can be done in a similar fashion to that of the 

thrust tests. The related lumped parameter is Equation (20)

  



                                   (20)

where  is the torque created by the motor, and   is the tor-

que coefficient for the motor/prop system. This torque pro-

vides a force that acts to yaw the system about the z axis.

By decreasing  and increasing , a positive 

roll moment is produced as Equation (21).

  
 

 
 

 
 

                (21)

The rotation of the propellers produces a gyroscopic effect 

that is expressed as Equation (22).

 




















                                 (22)

where   is the rotational inertia of the propeller, and 

       is the overall propeller speed.

3. Mathematical model of the hexacopter

As a basis for simulation, estimation, and control, a model 

describing the hexacopter and its dynamics is developed. For 

this, the well-known Newton–Euler formalism is used to de-

scribe the dynamics of a rigid body affected by external forces 

and torques. The motion of a rigid body can be decomposed 

into translational and rotational components. 

3.1 Translational dynamics

The force acting on the hexacopter is provided in the body 

frame, and the force required for the acceleration of mass and 

the centrifugal force are equal to the gravity and the total 

thrust of the rotors as follows: Equation (23).

   ×                             (23)

where   is the gravitational force acting in the body 

frame, and         is gravitational force in the inertial 

frame.

In the inertial frame, the centrifugal force is nullified. Thus, 

only the gravitational force and the magnitude and direction of 

the thrust contribute to the acceleration of the hexacopter as 

Equation (24).

                                         (24)

From Equations (1), (3), and (17), Equation (24) is equiv-

alent to Equation (25).













































                    (25)

or in quartation form
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









































 

 


 

 
 



                    (26)

3.2 Rotational dynamics

In the body frame, the external torque,      
, is 

equal to the torques due to the angular acceleration of the in-

ertia, 
; the centripetal forces,  ×  ; and the gyroscopic 

forces,  as Equation (27).


  ×                                 (27)

After some algebra, the following is obtained:

  
















×

































×














           (28)

Equation (28) can be written as Equation (29)



























  

  

 





































(29)

Once the angular velocity has been evaluated, the angular ac-

celeration in the inertial frame can be easily deduced as

  


                                        (30)

Finally, by combining Equation (26) and Equation (30), the 

differential dynamics equation of the hexacopter system can be 

obtained as




















































 

 


 

 
 



  




             (31)

4. Control simulation

In this section, a typical PID controller tuned by an avail-

able tool in Matlab [4][7] will be used to control the above 

hexacopter model to achieve the control purpose of reaching a 

given set point. 

4.1 Altitude control

The goal of the altitude controller is to keep the hexa-

copter at a reference value by using altitude and altitude-ve-

locity measurements. This is an attitude-command-only 

system. In other words, there is no control system to track 

the position. Instead, the controller only tries to track the at-

titude     and altitude (z) commands using PID 

controllers.

Figure 4: Altitude controller

A cascaded Position → Velocity PID control structure 

was implemented according to Figure 4, where the outer 

loop used a PID controller in which the controller’s output 

signal was calculated on the basis of the altitude reference, 

altitude measurements, and velocity measurement as 

Equation (32).

   




  




    

          (32)

This desired velocity was used by the inner loop, where a 

PI controller calculated the required change in the throttle as 

Equation (33).


  

 







    

                       (33)

The simulation conditions are summarized in Tables 1–

3. The reference signal is listed in Table 1, in which 

    are in units of degrees and the altitude (z) in re-

ported in meters. The initial conditions of given system 

and the PID controllers' parameters [8][9] are listed in 

Table 2. Table 3 summarizes the parameters of a certain 

model of a hexacopter. 

Table 1: Reference signals

Step time Initial value Final value
 10 0 -10
 20 0 10
 30 0 45
z 0 0 8
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Table 2: Initial conditions and PIDs parameters

       3
 0  1

 3  3.5
 1  3
 3.3  1
 3  3.3
 1.2 x = y = z 0(m)
 3.5

Table 3: Hexacopter's information

 1.4865e-06 

 2.925e-07 

g 9.98 

m 6.38 kg
 0.14822 

 0.053208 

 0.29239 

l 0.3 m
 3.357e-05 

The simulation results for altitude control are shown in 

Figure 5.

Figure 5: Altitude control results

It is obvious that all altitude control purposes were achieved 

by the proposed PID controllers. All parameters consisted of 

roll, pitch, yaw, and the high flight of the hexacopter reached 

the set points after a controlling time. Figure 6 shows the re-

action of the motors during the simulation time. At 0 s, the 

speeds of all motors increased at same rate to generate the re-

quired thrust to lift hexacopter from the initial position of 0 m 

to a set point of 8 m. At 10 s,  increased, and 

 decreased to produce a negative roll moment, which 

decreased the roll to a set point of -10°, as seen in Figure 7.

Similarly, Figures 8 and 9 show the behavior of the motors 

at points where the pitch and yaw and changed. 

Figure 6: Speed of motors

Figure 7: Speed of motors when changing roll

Figure 8: Speed of motors when changing pitch

Figure 9: Speed of motors when changing yaw
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4.2 Horizontal control

The horizontal controller used the roll and pitch angles to 

change the horizontal position and horizontal velocity.

Figure 10: Horizontal controller

Similar to altitude control, a cascaded Position → Velocity 

controller was used again, as seen in Figure 10. This time, the 

outer position loop used a PID controller that outputs a de-

sired velocity on the basis of the current position error and ve-

locity measurement as Equation (34).




 






  





  


       (34)

  



 

 




  










The inner velocity loop uses a PD controller to calculate the 

desired roll and pitch angles from the velocity error using 

Equation (25). Here, the PD controller is used for the sensitive 

response to the possible future values of the error based on its 

current rate of change.














 

 




                        (35)


 






 

 






The position and velocity control utilizes the earth frame; 

thus, the roll and pitch set points have to be rotated by the 

yaw rotation matrix because the hexacopter operates in the 

body frame. 

In this simulation case, the information of the hexacopter 

model and the initial conditions were the same as previous sim-

ulation work. The reference signals in this simulation were a 

point in the inertial frame, which is summarized in Table 4. 

Table 5 summarizes the parameters of the PID controllers, which 

are proposed for this case of horizontal control. The parameters 

applied to the inner-loop PD controllers are listed in Table 6. 

Table 4: Reference point information 

Step time Initial value Final value
x 0 0 10
y 0 0 5
z 0 0 5

Table 5: outer PIDs parameters

 6  6

 0.8  0.8

 3.5  3.5

 6  4.8

 0.8  1.4

 3.5  4.3

Table 6: Inner PD parameters

 0.2  0.3

 0.1  0.2

Figure 11 shows the tracking reference-point simulation 

results. After 10 s, the hexacopter almost reached the set point 

(10, 5, 5) in the inertial frame, meaning that the tracking task 

was achieved. Figure 12 shows the tracking error during the 

simulation time. The tracking error decreased with time and 

almost reached zero around 10 s when the tracking task was 

achieved.

Figure 11: Tracking of reference-point 

Figure 12: Tracking error
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The behavior of the motors during tracking is shown in 

Figure 13. From the initial point, the horizontal controller sent 

a command to increase the speeds of all six motors to gen-

erate thrust to lift the hexacopter and reach the set point. The 

hexacopter changed its Euler angles to move from the initial 

point to the set point. Figure 14 shows the details of the mo-

tors’ reaction. In this figure, the hexacopter changes its roll 

angle by increasing or decreasing the speed of motors 1, 2, or 

3 and motors 4, 5, or 6 respectively. These simulation results 

demonstrated that horizontal control is achieved with the men-

tioned PD and PID controllers.

Figure 13: Speed of motors during trajectory tracking

Figure 14: React of motors in some interval during tracking time

5. Conclusion

In this paper, a mathematical model of a hexacopter has 

been presented. The equations of motion have been defined by 

quaternions since, unlike the Euler angles, they do not suffer 

from a gimbal lock. They are also more efficient in terms of 

numerical computation. In order to avoid singularities, the ro-

tations of the hexacopter were parametrized in terms of 

quaternions. All of the equations for the force and moment 

calculations were mentioned in detail. The equations of motion 

has been defined on the basis of the Newton–Euler model. 

Altitude and horizontal controllers were proposed, in which the 

PD and PID controllers were implemented to generate control 

signals. A Matlab Simulink program was created for the simu-

lation work. The simulation results for both altitude and hori-

zontal control were presented and analyzed in detail.

Future work will extend in several directions. The model 

presented in this paper is a simplification of more complex dy-

namics; indeed, aerodynamic effects have been neglected. Thus, 

the next step will involve improvements in the hexacopter 

model with more realistic features and the application of more 

accurate control laws in order to be applied to real flights.
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