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Abstract:  The traditional RAP (Redundancy Allocation Problem) of complex systems has considered only the 

redundancy of subsystem with homogeneous components. In this paper we extend it as a RAP of complex 

systems with heterogeneous components which is more flexible than the case of homogeneous components. 

We model this problem as a nonlinear integer programming problem, find its optimal solution by tabu search, 

and suggest an example of the efficient reliability design with heterogeneous components. In order to improve 

the quality of the solution of the tabu search, we suggest a modified tabu search to employ an adaptive pro-

cedure (1-opt or 2-opt exchange) to generate the efficient neighborhood solutions. Computational results show 

that our modified procedure obtains better solutions as the size of problem increases from 30 to 50, even 

though it requires rather more computing time. With some adjustment of the parameters of the proposed 

method, it can be applied to the optimal reliability designs of complex systems of ships. 
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1. Introduction

The RAP is a well-known combinatorial opti-

mization problem which has been applied to reli-

ability system designs such as semi-conductor in-

tegrated circuits, nanotechnology, and most electronic 

systems of ships, etc. The RAP is to determine the 

optimal number of redundant component in order to 

maximize the system reliability constrained to re-

source restrictions or system-level constraints for cost 

and weight. Many researchers have studied the RAP 

for various system structures of series, series-parallel, 

complex system, k-out-of-n, etc. Fyffe et al. [1] origi-

nallyset up the problem and suggested a solution al-

gorithm utilizing a dynamic programming approach. 

Nakagawa and Miyazaki [2] developed 33 variations 

of Fyffe’s problem, where the weight constraint var-

ied its value from 159 to 191. Coit and Liu [3] pro-

posed zero-one integer programming for small size of 

problems. They constrained the solution space so that 

only the homogeneous component type can be al-

lowed for each subsystem.

On the contrary, Coit and Smith [4] extended 

Fyffe’s problem in such a way that the parallel sys-

tem could be more flexible. They allowed a mixing 

of component (i.e., heterogeneous component) types 

within a subsystem and employed GA (genetic algo-

rithm) to obtain optimal solutions.  RAP is usually 

formulated as a nonlinear integer programming prob-

lem which is generally difficult to find an exact opti-

mal solution due to the considerable amount of com-

putational effort. Therefore, various metaheuristic al-

gorithms have been developed. Kultruel-Konak et al. 
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[5] developed TS (tabu search)  algorithm for the 

RAP of series-parallel system, and it is hitherto 

known that solutions of Kultruel-Konak etal. [5]  are 

the best among the other metaheuristics such as GA 

(Coit & Smith [4]),  ACO (ant colony optimization; 

Liang & Smith [6]), VNS (variable neighborhood 

search; Liang & Chern [7]), and  hybrid meta-

heuristics (Nahas et al. [8]). Recently, Ouzineb et al. 

[9] developed a hybrid metaheuristic which is com-

bined TS with GA and obtained the same results of 

Kultruel-Konak et al. [5].

In the meanwhile, solutions for RAP of complex 

systems have been suggested by several authors (Ha 

& Kuo [10]). All authors have dealt with only the 

case of homogeneous components. In this paper, we 

suggest a RAPCH (RAP of complex systems with 

heterogeneous components) and find its optimal sol-

ution by the TS  algorithm, the best in the literature. 

In addition, in order to enhance TS in terms of the 

quality of the solution, we develop a MTS (modified 

tabu search) to employ an adaptive mechanism com-

bined with the TS. Computational results show that 

the proposed method obtains better results as the size 

of problem increases, even though it requires rather 

more computing time.

The rest of this paper is organized as follows. In 

Section 2, the model of RAPCH can be formulated as 

a nonlinear integer programming problem. In Section 

3, we propose a MTS algorithm for the RAPCH to 

improve the quality of the solution of TS. In Section 

4, a comparison of the case of the homogeneous 

components with that of the heterogeneous compo-

nents is provided with an example, and in Section 5 

we evaluate the performance of the proposed algo-

rithm through the computational efforts. Finally, con-

clusions and future research are discussed in Section 

6.

2. Statement of the problem

Notation

s number of subsystems

x the feasible solution

x0 the initial feasible solution

xc the current  solution 

xbf, xbinf the best feasible or infeasible solution 

found so far

xij the number of redundancy of the jth 

available component used in subsystem 

i

mi the number of available components for 

subsystem i

Rs(x) the system reliability

Ri, Qi the reliability and unreliability of 

subsystem i

Rp(x) the penalty function of the system 

reliability

C, W system-level constraints limits for cost 

and weight

cij ,wij ,rij the cost, weight and reliability for the 

jth available component for subsystem i

U upper bound of xij   

iter the number of iterations of MTS

Adapiter for adaptive procedure of MTS, the 

predetermined number of iterations 

without improving the value of Rs(x)

Stopiter the maximum number of stopping 

iterations 

 

Assumptions

 In the RAPCH, assumptions are as follows:

1. The system and all of its subsystems are 

s-coherent. 

2. The system consists of s subsystems, 

each of which is (1-out-of-xij: G).

3. All component states are s-independent.

4. Each constraint is an increasing function 

of xij and is additive among subsystems.
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5. System reliability Rs(x) is known in terms 

of the Ri.

 

The RAPCH optimization model can be 

generally formulated as the following nonlinear 

integer programming problem:

 

Maximize   )(xsR

     subject to
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This problem was proven to be a NP-hard 

problem (Chern [11]).

3. MTS Algorithm

To solve the RAPCH, we suggest a MTS to 

employ an adaptive procedure combined with the 

TS. The TS algorithm, first proposed by F. 

Glover [12], is a metaheuristic method to expand 

its search beyond local optimality using adaptive 

memory. The adaptive memory is a mechanism 

based on the tabu list of prohibited moves. The 

tabu list is one of the mechanisms to prevent 

cycling and guide the search towards unexplored 

region of the solution space. TS generally adopts 

the penalty function to allow to explore the 

search towards the promising infeasible region. 

The TS has been successfully applied to many 

combinatorial optimization problems such as ship 

routing problems, traveling salesman problems, 

time tabling problems, and resource allocation 

problems, etc. 

Our MTS is based on the TS of Kultruel- 

Konak et al. [5]. The MTS consists of four parts 

which are i) construction of initial solutions and 

stopping criterion, ii) tabu list, iii) the structure 

of generating the neighborhood solutions, and iv) 

penalty function. Among them, iii) the structure 

of generating the neighborhood solutions is 

usually different according to the characteristics of 

the decision variables for the problem. The 

general steps of MTS can be summarized as 

follows:

 

Step 0. (Initialization) Set iter=0,and initialize 

tabu list.

Step 1.  Randomly generate the initial solution 

x0. Set  xc = x0 and xbf = xbinf = xc.

Step 2.a. (Adaptive procedure)

        Set iter  iter+1. 

        If iter ≤  Adapiter, generate the      

     neighborhood of xc by the 1-opt      

     exchange. 

        Otherwise, generate the neighborhood  

     of xc by the 2-opt exchange (see      

    [13]).

Step 2.b. Select the best neighborhood which   

is not in the tabu list. Store it as     

the new current solution. Update      

the tabu list.

Step 3.  If xc is feasible, then go to step 4.

        Else go to step 5.

Step 4. If Rs(xc) > Rs(xbf), then set xbf = xc, 

iter  0, and initialize the tabu 

list. Go to step 2.a. Else go to step 

6. 

Step 5. If Rp(xc) > Rs(xbinf), then xbinf = xc, iter 

= 0, and initialize the tabu list. Go 

to step 2.a.                  

Step 6.  If iter > Stopiter, then goto step 7.

        Else go to Step 2.a.
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Step 7. (End) Stop with the best feasible 

solution found so far.

3.1 Construction of initial solutions and stopp- 

ing criterion

The initial solutions of MTS are randomly gen-

erated, and the scheme of randomly constructing the 

initial solutions is identical to the general scheme of 

local search heuristic. In our experiments, we try to 

find the optimal solution 10 times with different ini-

tial solutions for each problem. And the stopping cri-

terion of MTS is defined as 1000 iterations without 

finding an improvement in the best feasible solution. 

3.2 Tabu list

For the size of a tabu list, Kultruel-Konak et 

al. [5] showed that the dynamic size of the tabu 

list played a critical role in finding the better 

solutions for RAP. In our MTS, the size of the 

tabu list is also reset every 20 iterations to the 

value of between [s, 3s] uniformly distributed for 

the long-term memory. Once the list is full, the 

oldest element of the tabu list should be removed 

as a new one is added.

3.3 The structure of generating the neighbor- 

hood solutions (Step 2.a: Adaptive procedure)

The TS generally adopts 1-opt exchange 

(Kultruel-Konak et al. [5]) as  a  strategy  of  

generating the neighborhood solutions. It is apt to 

be trapped in a local optimum, regardless of the 

considerable amount of exploring solutions. In 

order to alleviate the risks of being trapped in 

such a local optimum, MTS employs an adaptive 

procedure (1-opt or 2-opt exchange) combined 

with the TS.  In Step 2.a (Adaptive procedure), 

if iter ≤  Adapiter, generate the neighborhood  

solutions of xc by the 1-opt exchange. And if iter 

> Adapiter, generate the neighborhood solutions 

of xc by the 2-opt exchange (see [13]). To 

efficiently find the neighborhood solutions, the 

2-opt exchange undertakes the 1-opt exchange 

twice simultaneously in each iteration of MTS.  

As a result, it requires rather more computing 

time than the 1-opt exchange. That is, MTS 

repeats the 1-opt exchange until the value of iter 

is less than or equal to the value of Adapiter. 

After the predetermined value of Adapiter iter- 

ation, our MTS adopts the 2-opt exchange to 

escape the local optimum, even though it requires 

rather more computing time. From our 

computational experiments of sensitivity analysis, 

we noticed that the proper number of Adapiter 

(i.e.,the end phase of the 1-opt exchange 

heuristic) was 500.

3.4 Penalty function

The MTS generally adopts the penalty function 

to allow to explore the search towards the 

promising infeasible region. The penalty function 

of Kultruel-Konak et al. [5] is adopted in our 

MTS. The penalty function for two independent 

constraints (cost and weight)  is as follows:
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where Rall is the unpenalized (feasible or 

infeasible) system reliability of the best solution 

found so far, Rfeas is the system reliability of the 

best feasible solution found so far, and c and 

w represent the magnitude for the violation of 

the cost and weight constraint, respectively. The 

initial values of NFTc and NFTw are set to 1% of 

the constraint limit for the cost and weight, 

respectively.  The values of K1 and K2 are set to 

1, though computational results are insensitive to 

these values. 

The value of NFTj at any given iteration j is 

updated as follows. If the current move is to a 
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S

1 2 3 4 5 6 7
cij  wij rij cij  wij rij cij  wij rij cij  wij rij cij  wij rij cij  wij rij cij  wij rij

1 1  3  0.70 2  2  0.71 3  2  0.73 2  3  0.73 2  4  0.74 3  3  0.74 2  5  0.75 

2 1  7  0.73 2  6  0.73 1  8  0.74 2  7  0.74 2  8  0.75 3  7  0.75 

3 1  5  0.65 2  5  0.66 1  6  0.67 3  4  0.69 3 5  0.70   4  3  0.71 4  4  0.72 

4 3  5  0.63 3  6  0.64 5  4  0.65 5  5  0.66 4  6  0.67 

5 2  3  0.73 3  2  0.73 2  4  0.74 3  3  0.74 3  4  0.75 4  3  0.75 4  4  0.76 

Table 1: Input data for heterogeneous components of bridge network system

feasible solution, then
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where j, a feasibility ratio at iteration j, is 

defined as

      j

j
j T

F


              (5)

The tabu list size at any given iteration j is 

defined as Tj, and the number of feasible 

solutions on the current tabu list is defined as Fj. 

The value of NFT changes according to the count 

of the feasible versus infeasible solutions on the 

tabulist. If the current move is feasible, Eq. (3) 

has a property of encouraging the search toward 

the promising infeasible regions. That is, this 

decreases the penalty for an infeasible solution 

and moves the search toward the infeasible 

region. Reversely, if the current move is 

infeasible, Eq. (4) increases the penalty for an 

infeasible solution and explores the search 

backward the feasible region.

4. An Example

We suggest an example of RAPCH in this 

paper. The system structure and subsystem data 

are given by  Figure 1 and Table 1, respectively.

   

 

Figure 1:  A bridge network system

The RAPCH  is formulated as follows:

Maximize  

Rs(x) = R5(1-Q1Q3)(1-Q2Q4)+Q5((1-(1-R1R2)(1-R3R4))

subject to 
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For example, R1 is given by
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 TS(100) TS(500) TS(1000) MTS

1 0.908632 0.908632 0.908632 0.908632

2 0.913549 0.917532 0.917532 0.917532

3 0.923191 0.924963 0.926519 0.926519

4 0.931247 0.931298 0.933629 *0.935594

5 0.938332 0.938856 0.938856 0.938856

 


7

1
11 ))1(1( 1

j

x
j

jrR

=(1-0.3x11×0.29x12×0.27x13×0.27x14×0.26x15×0.26x16×0.

25x17)

When C = 34 and W = 51 of this RAPCH, 

the TS yields an optimal solution, that is, x11 = 

x21 = x22 = x36 = x37 = x41 = x45 = x52 = 1, Rs(x) 

= 0.981432. The heterogeneous structure of this 

solution is shown in Figure 2(b).

        

(a) Homogeneous (R=0.980906)  

 

 (b) Heterogeneous (R=0.981432)

 

Figure 2: The optimal solutions for homogeneous 

and heterogeneous components

In Figure 2(a), the optimal solution for the 

case of homogeneous components is given by x13 

= 1, x52 = 1, x22 = 1, x37 = 1, x41 = 1, Rs(x) = 

0.980906. This result indicates that the design of 

heterogeneous components can provide the possi-

bility of having the better system reliability than 

that of homogeneous components. 

5. Computational Experiments

To additionally evaluate the performance of the 

TS and the proposed MTS, test problems for 

moderate size of system structure are designed. 

They are composed of 3 sets of 10 test problems, 

that is, 30 test problems totally. We replicated 

the data in Table 1 by h-hold, where h ranges 

from 6, 8 to 10, i.e., the number of subsystems 

of each problem became s = 5 × h (i.e., 30, 40, 

50). 

As mentioned in section 3, TS generally 

adopts 1-opt exchange procedure as a strategy of 

generating the neighborhood solutions. It is apt to 

be trapped in a local optimum, regardless of the 

considerable amount of exploring solutions. In or-

der to alleviate the risks of being trapped in such 

a local optimum, the adaptive procedure of alter-

natively allowing 2-opt exchange procedure of 

generating the neighborhood solutions is employed 

in MTS, even though it requires rather more 

computing time. That is, our MTS exploits 1-opt 

exchange procedure at the first predetermined 

Adapiter iterations, and then adopts 2-opt ex-

change procedure after the Adapiter iterations to 

escape the local optimum.

 At first, in order to determine the proper val-

ue of Adapiter as the flexible strategy of generat-

ing the neighborhood solutions of our MTS algo-

rithm, we performed a sensitivity analysis for 

stopping criterion of TS. We varied the value of 

Stopiter from 100, 500 to 1000. 

Table 2: A comparison of  TS and MTS 

             (a) s=30 
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6 0.943398 0.943398 0.944984 0.944984

7 0.94876 0.949251 0.949124 *0.949672

8 0.954468 0.954468 0.954468 0.954648

9 0.958789 0.959187 0.960928 0.960928

10 0.963613 0.963613 0.963613 0.963613

 TS(100) TS(500) TS(1000) MTS

1 0.846467 0.877540 0.880071 0.880071

2 0.890079 0.890079 0.890079 *0.890789

3 0.899636 0.901050 0.903218 0.902824

4 0.909391 0.912833 0.912597 *0.915061

5 0.918731 0.919243 0.919105 *0.920186

6 0.926244 0.924689 0.926244 0.926244

7 0.932005 0.931954 0.932177 0.932068

8 0.937709 0.939276 0.939276 *0.940855

9 0.945833 0.946006 0.948247 0.948247

10 0.951250 0.951781 0.951747 *0.951781

 TS(100) TS(500) TS(1000) MTS

1 0.850486 0.850379 0.850598 *0.852407

2 0.860910 0.862835 0.864261 *0.866084

3 0.875717 0.878649 0.878728 *0.880030

4 0.884350 0.889970 0.894979 0.893736

5 0.899826 0.899542 0.899826 0.899826

6 0.907803 0.907794 0.907418 *0.907900

7 0.915749 0.915705 0.914810 *0.917033

8 0.924259 0.925744 0.924412 *0.925879

9 0.932270 0.933408 0.934261 *0.935732

10 0.939978 0.940047 0.940013 *0.940048

 T(sec.)  14.7    48.7       90.3      117.3

            

             (b) s=40

T(sec.)  32.4     95.3      164.2      205.9
           

             (c) s=50

T(sec.)  58.4     150.6     313.2      327.5

 * : MTS obtains the better solutions than TS

We compared their performance by extending 

the size of subsystem from 30 up to 50. From 

our computational experiments, we noticed that 

the compromised number of Adapiter (i.e., the 

end phase of the 1-opt exchange) was 500. As a 

result, MTS employs the 1-opt exchange at the 

first 500 iterations without improving Rs(x), and 

then adopts the 2-opt exchange after the 500 iter-

ations without improving Rs(x). The computational 

results of sensitivity analysis for stopping criterion 

are shown in Table 2. Among TS(100), TS(500), 

and TS(1000), the TS(1000) obtains the best re-

sults in terms of solution quality. However, it re-

quires the considerable amount of computing 

time. The performance of our  MTS  is also 

shown in the last column of  Table 2.  From 

Table 2, we notice that our MTS obtains the bet-

ter solution in 2, 5 and 8 cases for s=30, 40 and 

50, respectively than the TS(1000). From the 

computational results, we notice that the proposed 

method obtains the better results than the TS, as 

the size of the problem increases from 30 to 50, 

even though MTS requires rather more computing 

time than the TS.

6. Conclusions

Solutions for RAP of complex systems have 

been suggested by several authors (Ha & Kuo 

[10]). All authors have dealt with only the case 

of homogeneous components. In this paper, we 

suggested a RAP of complex systems with 

heterogeneous components and obtained its 

optimal solution by the TS algorithm which is 

the best in the literature. In addition, in order to 

enhance TS in terms of the quality of the 

solution, we developed a MTS to employ an 

adaptive procedure (1-opt or 2-opt  exchange) 

combined with the TS. Computational results 

showed that the proposed method obtained the 

better results as the size of the problem increases, 

even though it requires rather more computing 

time. 

To improve the quality of the solution, the 

development of more powerful metaheuristics for 

the RAPCH should be performed in future 

research. With some adjustment of the parameters 
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of the proposed method, it can be applied to the 

optimal reliability designs of complex systems of 

ships.
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