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Abstract: We propose nonlinear GMM-based transformation functions in an attempt to deal with the 

over-smoothing effects of linear transformation for voice processing. The proposed methods adopt RBF net-

works as a local transformation function to overcome the drawbacks of global nonlinear transformation 

functions. In order to obtain high-quality modifications of speech signals, our voice conversion is implemented 

using the Harmonic plus Noise Model analysis/synthesis framework. Experimental results are reported on the 

English corpus, MOCHA-TIMIT.
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1.  Introduction

There are numerous applications of voice conversion 

such as personalizing text-to-speech systems, improv-

ing the intelligibility of abnormal speech of speakers, 

and morphing the speech in multimedia applications 

and others [1]. Basically, Voice conversion consists of 

spectral conversion and prosodic modification in which 

spectral conversion has been studied more extensively 

and obtained many achievements in the voice con-

version research community. In this paper, we also 

deal with the problem of spectral conversion only.

Many approaches have been proposed for spectral 

conversion including codebook mapping as shown in 

[2], back-propagation neural networks, and GMM-based 

linear transformation. Among them, the GMM-based 

linear transformation approaches have been shown to 

outperform other approaches (refer to [3]-[5]).

We briefly describe the conventional GMM-based 

linear transformation methods and also, the 

over-smoothing effect of linear transformation is 

presented. And following sections, we describe non-

linear transformation methods using Radial Basis 

Function (RBF) networks and propose a localized 

transformation function using RBF networks. We ex-

periments our algorithm with MOCHA-TIMIT and 

compare with previous method and our method 

compactly. 

2. GMM-based Voice Conversion

Let   and       ⋯    be the 

time-aligned sequences of spectral vectors of the 

source speaker and the target speaker respectively in 

which each spectral vector is a p-dimensional vector. 

The goal of spectral conversion is to find a con-

version function  that transforms each source 

vector  into its corresponding target vector .

In GMM-based spectral conversion, a GMM is as-

sumed to fit to the spectral vector 

 
  



                 (1)  

where  denotes the prior probability of class   and 
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  denotes the p-dimensional normal dis-

tribution with mean  and covariance matrix   de-

fined by

                     








 


 


  

    (2)

The parameters of the model can be estimated by 

the expectation-maximization (EM) algorithm. In the 

least squares estimation (LSE) method, the following 

form is assumed for the conversion function 

                 




  



  
 

      (3)

where   is the probability that   belongs to 

the class  .The parameters   and   are estimated 

from training data by the linear least squares estima-

tion method. However, in Equation  (3) the terms  

and   play no special roles in the linear trans-

formation of  . So Equation  (3) can be simplified as

                        

 
  



             (4)

and we also refer to Equation  (4) as the LSE 

method.

An alternative for the LSE method is the joint den-

sity estimation (JDE) method proposed in [4] with the 

conversion function
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LSE and JDE methods are theoretically and empiri-

cally equivalent. Therefore, in this paper we just use 

the LSE method as the spectral conversion algorithm 

for our baseline system.

Although GMM-based linear transformations have 

been shown to outperform other methods, our experi-

ments shows that in some cases it is inadequate to 

model the conversion function by a linear trans-

formation since the correlation between source and 

target vectors are small. 
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Figure 1: Correlation coefficients of source and tar-

get vectors ( order LSFs) (the darker cell is the 

lager element)

In Equation  (5), the correlation between the 

source vector x and the target vector y is the term




. In statistical terms, the correlation co-

efficients determine the linear association between the 

two vectors. However, our experiments shows that in 

many cases the correlation coefficients in this term 

are very small, meaning that modeling the relation-

ship between x and y by a linear function is 

inadequate. In our experiments, nearly 90% of the el-

ements have values less than 0.1. Moreover, over 

50% of the elements are smaller than 0.01.Due to the 

small values of this correlation term, the converted 

vectors, are usually close to 
  




 . 

This means that whatever the source vector is, the 

converted vector is very close to the sum of weighted 

means of target vectors. As a result, the converted 

speech seems to be over-smoothed.
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3. Nonlinear GMM-based Transformation

3.1.  Nonlinear Transformation Function: RBF

A GMM-based nonlinear transformation has been 

proposed using Radial Basis Function (RBF) networks 

by [6], which is a refinement of the Baudoin's model 

[7]. RBF network is a nonlinear interpolation techni-

que posing the property of best approximation as 

shown in [8]. Figure 2 shows the structure of a typi-

cal three-layer RBF network with  inputs, one hid-

den layer containing   nodes corresponding to m 

basis functions, and  outputs. The input vector 

  ⋯ is applied to all the basis func-

tions in the hidden layer. The output of each hidden 

node     ⋯ is a nonlinear function 

called a basis or response function. The output of the 

hidden layer is weighted by a weighted vector 

  ⋯ (note that   is the bias 

term). Then, the output of the network 

  ⋯  is a weighted sum determined by

                           

 
  



    ⋯             

or simply in matrix form

  ×                       (6)

where   is the (m+1)-dimensional vector and   

is a   ∙ weight matrix.

Figure 2: Structure of an RBF network

In RBF networks, the choice of basis functions 

plays an important role in the success of approx-

imation problems. The widely used basis functions in-

clude Gaussian functions and spline functions whose 

parameters are determined empirically as in [7]. In 

this paper, unlike Baudoin's model, we use a more 

principled RBF approach presented by [9] in which 

the basis functions are the normal probability density 

functions of the GMM of the source speaker. 

Specifically, we fix the number of basis functions as 

the number of mixtures of a GMM and then estimate 

the parameters of the GMM using the EM algorithm. 

The basis functions then have the form

   exp 


 


       (7)

Note that Equation  (7) differs from Equation  (2) 

in the constant term   since the ba-

sis functions need to be normalized.

The drawback of the RBF method is that it may be 

difficult to approximate a complex relationship by a 

global nonlinear function. Therefore, in the next sec-

tion we propose a refined approach where we approx-

imate the relationship between source and target fea-

tures by a mixture of locally nonlinear functions, 

each of which is approximated by an RBF.

 

Figure 3: Transformation function using Piecewise 

RBF. Nonlinear functions are adopted locally.   

is a linear transformation of   and  
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3.2.  Piecewise RBF

In this section, w e propose a more generalized 

version of the LSE method where each local linear 

function is substituted by a local nonlinear function 

which is modeled by an RBF network. However, 

since it is hard to determine a different set of basis 

functions for each local RBF, we use the same set of 

basis functions   ⋯ 

for every local RBF (see Figure 2). Similar to the 

RBF transformation method above, here the basis 

function     ⋯  is the “normalized” 

Gaussian distribution density in Equation  (7). 

Consequently, the transformation function has the fol-

lowing form

                            

  
  



           (8)

The transformation function ∙  is entirely de-

fined by the p-dimensional vectors   and the ×  

matrices  for   ⋯ .

These parameters are estimated by linear least 

squares estimation on the training data so as to mini-

mize the total error

  
  

 ∥ ∥                 (9)

Specially, the least squares optimization of the pa-

rameters is the solution of the following set of linear 

equations

   
  



    (10)

for all   ⋯. In the matrix form, (11) can be 

written as 

   ∆   ⋮∆



 
⋯





           (11)

Where the two matrix  and  are the unknown pa-

rameters of the transformation function.   is a ×   

matrix,  is a  ×  matrix and  is a ×  ma-

trix containing the target spectral vectors as follows
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           (12)

 is a ×   posterior matrix and ∆ is a 

×  matrix that depends on the conditional proba-

bilities, the source vectors, and the GMM parameters.

The solution for Equation  (11) is given by the 

normal equation
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   (13)

The left most matrix in Equation  (13) is sym-

metric but not positive definite and thus cannot be in-

verted using the Cholesky decomposition. Therefore, 

we exploit SVD to compute its pseudo inverse.

 

4.  Experiments

4.1.  Experimental Environments

We use the MOCHA-TIMIT speech database [8] to 

train and evaluate proposed system. For training, 30 

sentences were used for each speaker which result in 

more than 6000 vectors. 10 sentences were used for 

evaluation. Two male and two female speakers are 

participated in the experiments. We perform eight 

conversion tasks, four male-to-female, and four fe-

male-to-male conversions. Table 1 show the speaker 

combination used in our experiments. There are two 

important distances in voice conversion: the trans-
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formation error    and the inter-speaker 

error   where    denote 

the source, target, converted speech respectively. All 

the errors are conceptual and cannot be measured 

directly. In this experiment, these errors are approxi-

mated by objective measures as 

 



 



  










  








      (14)

where   is the two sequences of LSF vectors,  

is the number of vectors in each vector sequence,  

is the order of LPC and  is the kth component of 

ith LSF vector.

Table 1: Speaker Combination.

source/target M1 M2 F1 F2
M1 √ √
M2 √ √
F1 √ √
F2 √ √

To take into account the inter-speaker errors, we 

define the LSF performance index as Equation  (15).

   


              (15)

 

The Performance index defined as Equation  (15) 

uses normalized error to compare the performance of 

different voice conversion tasks across the different 

speaker combinations. The performance index is 0 

for a simple copy of source speech to the output with-

out conversion. In the case of producing the exact tar-

get speech,  is 1. Although  and  are 

not the standard measures of error between two speech 

signals, they can be applied to input and output param-

eters of the conversion system directly. This is the rea-

son why we use them as objective measures. 

4.2.  Experimental Results

In the experiments, we investigated the influence 

of the number of mixture components m on the per-

formance of conversion system. LSE and RBF were 

used as baseline systems and compared with proposed 

piecewise RBF method. Experiments were performed 

while increasing m as 1, 2, 5, 8, 16, 32, 64, 128 with 

fixed LPC order   .

Table 2 shows the experimental results averaged 

over all speaker combinations. Experimental results 

show that when the number of mixtures is increased, 

proposed method gives better results than the baseline 

systems. This can be interpreted as for the small 

number of mixtures, linear transformation methods 

gives better results, however for the large number of 

mixtures, local non-linear transformation function 

gives better conversion results by removing the draw-

backs of linear and global non-linear transform 

functions. 

Table 2: Performance index   averaged over all 

speaker combinations

Number of 

components

LSE RBF Piecewise RBF

1 0.35 0.13 0.13

2 0.36 0.14 0.17

4 0.36 0.16 0.23

8 0.37 0.18 0.31

16 0.37 0.19 0.35

32 0.37 0.21 0.38

64 0.38 0.22 0.39

128 0.38 0.23 0.40

 5.  Conclusions
In this paper, we propose GMM-based piecewise 

nonlinear transformation methods for voice 

conversion. Experiments show that the piecewise RBF 

method is comparable to the linear transformation 

methods and when the large number of mixtures is 
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used, the proposed method gives a higher accuracy. 
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