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Abstract: In this paper, an approach to deal with model uncertainty using norm-optimal iterative learning con-

trol (ILC) is mentioned. Model uncertainty generally degrades the convergence and performance of conven-

tional learning algorithms. To deal with model uncertainty, a worst-case norm-optimal ILC is introduced. The 

problem is then reformulated as a convex minimization problem, which can be solved efficiently to generate 

the control signal. The paper also investigates the relationship between the proposed approach and conven-

tional norm-optimal ILC; where it is found that the suggested design method is equivalent to conventional 

norm-optimal ILC with trial-varying parameters.Finally,simulation results of the presented technique are given.
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1. Introduction

Iterative learning control (ILC) has been widely 

adopted in control applications as an effective ap-

proach to improve the performance of repetitive proc-

esses [1][2][19]. The key idea of ILC is to update the 

control signal iteratively based on measured data from 

previous trials such that the output converges to the 

given reference trajectory. Most ILC update laws use 

the system model as a basis of the learning algorithm 

and convergence analysis. Since system models are 

never perfect in practical applications, accounting for 

model uncertainty in the ILC design and analysis is 

important. This paper presents an ILC approach that is 

robust against model uncertainty.

The robustness of a variety of ILC approaches has 

been discussed in literature: inverse model-based ILC 

[3], linear ILC [4], norm-optimal ILC [5], two dimen-

sional learning system [6], and gradient-based ILC al-

gorithms [7]. In general, these papers derive ILC con-

vergence conditions. Some papers present ILC designs 

that explicitly accounts for model uncertainty to im-

prove robust performance and convergence. In [8], the 

authors consider higher order ILC, while [9] inves-

tigate the choice of time-varying filtering for robust 

convergence algorithms. A robust ILC that account for 

interval uncertainty on each impulse response of the 

lifted system representation is considered [10], which 

results in a large implementation effort. An extension 

of this analysis uses a parametric uncertainty model 

for the lifted system representation [11]. Since norm 

based design techniques are a common approach to 

deal with model uncertainty in robust feedback control 

design, they have also been exploited to design robust 

ILCs in both frequency-domain using the z-domain 

representation, and time-domain, using the lifted sys-

tem representation [12]–[15].
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This paper proposes a robust optimal ILC approach 

taking into account model uncertainty. In order to rep-

resent the system models in the ILC algorithm, at first, 

nominal plant, weighting filter and unstructured un-

certainty models are considered in the frequency do-

main representation [16]. Then these models are con-

verted into lifted models. The robust ILC controller is 

formulated as a min-max problem with a quadratic 

cost function to minimize its worst-case value under 

model uncertainty. Here, it is shown that the 

worst-case value can be found as the solution of a du-

al minimization problem. Accordingly, the min-max 

problem is reformulated as a convex optimization 

problem, yielding a global optimal solution. This work 

is different from [11] and [15], which have established 

robust worst-case ILC algorithms: [11] considers para-

metric uncertainty while [15] is based on  control 

theory. Moreover, strong duality is investigated in our 

worst-case problem leading to a more intuitive 

solution. Finally, it is shown that the proposed ap-

proach can achieve monotonic convergence of the 

tracking error.

As an additional contribution of the paper, the 

equivalence between the solution of the proposed ro-

bust ILC and classical norm-optimal ILC [17] with tri-

al-varying weights is discussed. Even though some 

works have already discussed the importance of weight 

matrices in convergence analysis and converged per-

formance of norm-optimal ILC [15][18], they only 

considered fixed weights for all trials. Here, we will 

demonstrate the change of weights trial-by-trial in or-

der to achieve robustness, which also provides more 

insight into the effects of weights on robustness and 

convergence speed of norm-optimal ILC with model 

uncertainty.

The remainder of this paper is organized as follows. 

Section II provides the background on norm-optimal ILC 

and then presents the robust ILC problem. Section III 

formulates the developed optimal ILC approach, and 

section IV compares the developed robust ILC with con-

ventional norm-optimal ILC. Simulation results are given 

in Section V, and Section VI concludes this paper.

2. Problem Formulation

2.1 System representation

The ILC design is considered in discrete time, 

where the discrete time instants are labelled by k = 

⋯ and q denotes the forward time shift 

operator. The trials are labelled by the subscript j = 

⋯  Each trial comprises N time samples and 

prior to each trial the plant is returned to the same 

initial conditions, which are assumed zero without loss 

of generality [1]. The robust ILC design considers lin-

ear time-invariant (LTI), single-input single-output 

(SISO) systems that are subject to unstructured addi-

tive uncertainty. That is, the method accounts for a set 

of systems of the following form:

   ∈     (1a)

with

  ∥∥∞ ≤                (1b)

Where   is causal LTI system and∥∥∞ means the 

∞ norm.   is the nominal plant model and the 

weight   determines the size of the uncertainty. 

 ,   and   are stable transfer functions. 

Both   and   are assumed to have relative 

degree 1. The system input in trial j is denoted by 

 , and   is the system output.

The ILC design is formulated in the trial domain, 

relying on the lifted system representation [1]. The in-

put and output samples during the trial are grouped in-

to large vectors

    ⋯  

    ⋯  

and the plant dynamics are reformulated between  

and  :
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                           (2)

Let    and   denote the impulse re-

sponses of    and   respectively. And 

let   be the Toeplitz operator, that is,

⋯ 











  ⋯ 
  ⋱ ⋮

⋮ ⋱ ⋱ 
 ⋯  

          (3)

then   is given by

                             (4)

where,

  ⋯
   ⋯
  ⋯

In the lifted form, the set  translates into the fol-

lowing set

    ⋯

  
  

∞

 ∥∥∞ ≤ 

To obtain a tractable reformulation of the robust 

ILC design, the set   is replaced by an outer ap-

proximation: 


   ∈


∥∥∞ ≤               (5)

where ∥∥∞ is the induced matrix 2-norm. Hence, 

we replace ∥∥∞ ≤  ∥∥≤ , and ex-

tend the set of lower triangular Toeplitz matrices to 




 With the first replacement, we also extend the 

set   since for stable, causal, LTI system  , it 

holds that∥∥≤∥∥∞ [19]. In addition, 

equality holds for →∞. 

2.2 Norm-optimal ILC

Norm-optimal ILC is an optimization-based ILC de-

sign, where the control signal is computed by minimiz-

ing the following performance index with respect to 

 

  ∥∥
 ∥ ∥



∥∥


         (6)

where Q and R are symmetric positive definite ma-

trices, and S is a symmetric positive semi-definite ma-

trix such that ∥∥    and ∥∥
   . 

In the cost function,  is the -th trial track-

ing error, and is given by

    

       

           (7)

Hence the cost function  depends on both  

and . 

In classical norm-optimal ILC, the error  is re-

placed by the nominal estimated error by assum-

ing   . This leads to the following ILC update 

law. 

    ≤                         (8a)

where,

  


    

         (8b)

  


    

                (8c)

The update algorithm is nominal monotonically con-

vergent if ∥∥ . Furthermore, the robust 

monotonic convergence condition is ∥∥ . 

Note that there is a tradeoff between performance and 
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robustness in the design of a classical norm-optimal 

ILC controller by determining Q, R and S [1]. For in-

stance, robust monotonic convergence can be achieved 

by increasing S, but it then reduces the convergent 

performance. This compromise motivates our robust 

ILC design approach such that both monotonic con-

vergence and high performance are achieved. 

In this work, a problem to minimize the cost func-

tion (6) without the assumption    is considered. 

And robust norm-optimal ILC design considering the 

following worst-case optimization problem is proposed. 

      


 ∥∥≤ 
min          (9)

where substituting (7) into (6) yields

   ∥ P ∆ ∥



∥ ∥
 ∥∥



  

(10)

In the next sections, the solution of this optimization 

problem is investigated.

3. Robust ILC Design 

This section presents the proposed robust ILC algo-

rithm, and consequently, analyses its convergence. 

3.1 Robust ILC Algorithm

In order to find the worst-case cost function with re-

spect to  in (9), let us consider the following max-

imization problem:

 ∥ P ∆ ∥



 ∥∆∥≤                      (11)

By setting

∆   ≡                   (12a)

   ≡                  (12b)

the constraint ∥∥≤ . can be reformulated as

∥∥ ≤ ∥∆ ∥          (13)

The maximization problem (11) is then transformed 

into the following equivalent problem:

   ∥ ∥



  ∥∥ ≤ ∥ ∥   (14)

In fact, for any  that satisfies the constraint 

(13), the corresponding ∥∥≤  can be obtained as 

follows:

 ∥  ∥

  


                (15)

if   ≠. Otherwise,  can be any 

matrix with ∥∥≤ .  

It is worth stressing that strong duality holds for 

(14) thanks to the S-procedure [20]. Introducing 

the Lagrangian multiplier , the Lagrangian 
function is expressed as

 ∥ ∥



∥ ∥ ∥∥

(16)

Maximization over  yields the following 

Lagrange dual functions:

  
     ≥  ∈

∞ 

where 
   and   de-

notes the range of  . Note that  is 

the pseudo-inverse and I is an identity matrix of size 

N. As a result, 
   is obtained as
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
   


 

 ∥ ∥

        (17)

As a consequence, the dual problem of (11) is given by




     (18) 

subject to   ≥,∈

Combining original minimization problem (9) with 

(18) yields






   (19a) 

subject to   ≥,∈

where   denotes the dual cost function,

  


 

∥ ∥ ∥ ∥


∥∥


    (19b)

Define   , then   is a convex 

function. In addition, the constraints of (19) can be re-

formulated in terms of   as  ≥ ⇔  ≥   

and ∈ ⇔∈  . 

Using the Schur complement and slack variable ∈ 

the optimized input can be found from equivalent 

semi-definite program (SDP) [20]



 
   (20a) 

subject to



 


  






≥ 

where

      ∥ ∥

∥ ∥
 ∥∥



(20b)

3.2 Special case:   

In this subsection, the proposed robust ILC design is 

considered when   . The selection of weighting 

matrices as scaled identity matrices is common in 

practice, because it simplifies the tuning of the 

norm-optimal ILC algorithm and automatically guaran-

tees monotonic convergence for the nominal case. An 

additional advantage of this choice is that it simplifies 

our robust problem leading to the analytical solution 

for the optimal parameter . In fact, if   , (19) 

yields the following optimal as

 ∥ ∥
∥∥

  ≠   (21)

and  ∞,    . The solution sat-

isfies the constraint in (19.)

Consequently, problem (19) is reformulated as

               






   (22)

where   is the cost function with respect 

to the worst-case model uncertainty  ,

  ∥∥∥ ∥

∥ ∥
 ∥∥



This problem can be solved effectively using convex 

programming [20].

3.3 Convergence

We now analyze convergence of the proposed robust 

ILC design with the case   . Define 
  and 


  as the optimal input and the corresponding track-

ing error of the robust ILC problem (22), respectively. 

Thus 
  ≤   , yielding
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
  ≤  ∥∥

 ∥∥
   (23)

Moreover, for ∈
  we have

∥
 ∥

 ∥
 ∥

 ≤ 
 

≤ 
 

        (24)

where 
    

 .As a result, we obtain the 

following inequality:

∥
 ∥

 ∥
 ∥

 ≤∥
∥

 ∥
∥

    (25)

which shows the monotonic convergence of the ro-

bust ILC design. In addition, the relationship

∥
 ∥

 ∥
 ∥

 ≤ 
 

≤∥
∥

 ∥
∥



            (26)

demonstrates the monotonic convergence of the 

worst-case cost function.

4. Interpretation of the Results as 

Adaptive ILC 

This section discusses the relationship between the 

developed robust approach and the classical norm-opti-

mal ILC formulation. At first, the optimization prob-

lem (19) is rewritten as follows.






   (27)  

subject to   ≥,∈

For the calculation of the optimal solution of this 

minimizing problem, the optimal input is achieved by 

differentiating the cost function with respect to,  

yielding


     (28)

where,

    

  

    

 

   

  



 



where  are   dependent on  and 

are calculated by using

   ∙
 ∙             (29a)

   
               (29b)

After that, the optimal 
  is found from the fol-

lowing optimization problem:






     (30)  

subject to   ≥,∈

This is a nonlinear optimization problem, and once 


  is calculated, the learning gains in the ILC law 

(28) are obtained yielding 
 . The parameters  

and  in (29) can be  updated by using 
  and 


 .

By comparing of the robust worst-case ILC con-

troller described by (28)-(30) with classical ILC (8), 

the formula is the same except the weight matrices are 

updated trial-by-trial. Particularly, the adaptive con-

troller depends on  and  while S remains 

trial-invariant. Moreover, if    then from (21) and 

(29) yields

  ∥ 
 ∥

∥
 ∥

    (31a)

    
       (31b)

Hence, when the amount of uncertainty is very 

small, i.e.∥∥≈,  the updated weights are ap-
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proximately equal to the given Q and R. In addition, 

as an effect of the convergence of the robust ILC, i.e.

→ as →∞, the solution of  in (18) shows 

that →∞. Thus ∥∥ converges to 

∥∥, while ∥∥ increases eventually to a 

very large value in the trial domain.

5. Simulation

Consider the uncertain plant:

    where the nominal model:

  


                             (32)

and the additive weighting transfer function is given by

   


                    (33)

For this simulation, an arbitrary stable unstructured 

uncertainty   is selected as

  

 
                           (34)

Figure 1: Bode-diagram of uncertain plant.

Figure 1 shows the Bode plots of the nominal model 

and the selected uncertain plant   with the given 

 . Next, the nominal model, weight transfer func-

tion and un-structured uncertainty model are discretized 

with sampling time T = 0.002s, then lifted with N = 

500 samples. Here, ∥∥∞  , while the lifted 

uncertainty model has its 2-norm: ∥∥≈  .

Simulations of the proposed robust ILC algorithm 

are performed along 50 trials, and each trial starts 

from the same initial states.

Figure 2: Reference output.

 The reference trajectory is a smoothed step func-

tion, which is shown in Fig. 2. The weight matrices Q, 

R, and S are simply selected as scaled identity ma-

trices   ×  × , respectively. Where 

 means ×   matrix. The tracking errors ob-

tained with the robust controller are shown in Fig. 3 

(solid line). For comparison purposes, we also apply 

the same set of weight matrices Q; R; S to the classi-

cal norm-optimal ILC approach, and plot the results in 

Fig. 3 (dashed line). From the simulation results in 

Fig. 3, it can be seen that the robust ILC algorithm 

guarantees monotonic convergence of the tracking 

error. In contrast, the classical norm-optimal ILC de-

sign shows divergence of the tracking error. This dem-

onstrates an advantage of the robust design over the 

classical norm-optimal ILC, where the robust ILC al-

ways achieves monotonic convergence.

In the next simulations, the equivalence between the 

proposed robust design and norm-optimal ILC with tri-

al-varying weights is analyzed. Applying the equivalent 

adaptive ILC algorithm, the varying of  and  in 

the trial-domain were illustrated in Fig. 4. This figure 

confirms that ∥∥ decreases as  increases and 

eventually converges to ∥∥ as discussed in Section 

IV. On the other hand, ∥∥ increases over the trials.
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Figure 3: Performance comparison between robust 
ILC and classical norm-optimal ILC.

The changes in  and  result in a slower 

convergence. Hence, as the controller starts learning 

from previous trials, the convergence speed is de-

creased to obtain a robust algorithm.

Figure 4: Trial-varying weight matrices(, ).

6. Conclusion

The major contribution of this paper is a robust ILC 

design that can guarantee monotonic convergence in 

the presence of additive model uncertainty. The pro-

posed robust ILC design approach corresponds to a 

convex optimization problem that can be solved 

efficiently. An interpretation of the robust ILC ap-

proach as an adaptive norm-optimal ILC with tri-

al-varying learning gains is also investigated. The ef-

fectiveness of the proposed control scheme is con-

firmed from simulation results. The connection be-

tween robust ILC and adaptive norm-optimal ILC for 

both robustness and fast learning purposes will be fur-

ther studied in the future works.

Acknowledgments

The research was supported by the Green Marine 

Equipment RIS Center Program through the Ministry 

of Trade, Industry & Energy (MOTIE).

References

[1] D. A. Bristow, M. Tharayil, and A. G. Alleyne, 

“A survey of iterative learning control: a learning 

based method for high-performance tracking 

control,” IEEE Control Systems Magazine, vol. 

26, pp. 96–114, June 2006. 

[2] H.-S. Ahn, Y. Chen, and K. Moore, “Iterative 

learning control: Brief survey and categorization,” 

Part C: Applications and Reviews, IEEE 

Transactions on Systems, Man, and Cybernetics, 

vol. 37, pp. 1099–1121, nov. 2007.

[3] T. J. Harte, J. Hatonen, and D. H. Owens, 

“Discrete-time inverse model-based iterative 

learning control: stability, monotonicity and 

robustness,” International Journal of Control, vol. 

78, no. 8, pp. 577–586, 2005.

[4] R. W. Longman, “Iterative learning control and 

repetitive control for engineering practice,” 

International Journal of Control, vol. 73, pp. 

930-954, 2000.

[5] T. Donkers, J. van de Wijdeven, and O. Bosgra, 

“Robustness against model uncertainties of norm 

optimal iterative learning control,” Proceedings of 

the American Control Conference, 2008.

[6] E. Rogers, J. Lam, K. Galkowski, S. Xu, J. 



Optimal iterative learning control with model uncertainty 

Journal of the Korean Societ of Marine Engineering, Vol. 37, No. 7, 2013. 11                               751

Wood, and D. Owens, “LMI based stability 

analysis and controller design for a class of 2D 

discrete linear systems,” Proceedings of the 40th 

IEEE Conference on Decision and Control, vol. 

5, pp. 4457–4462, 2001.

[7] D. Owens and S. Daley, “Robust gradient 

iterative learning control: time and frequency 

domain conditions,” International Journal of 

Modeling, Identification and Control, vol. 4, no. 

4, pp. 315-322, 2008.

[8] K. Moore, Y. Chen, and H.-S. Ahn, “Algebraic 

H1 design of higher-order iterative learning 

controllers,” Proceedings of the IEEE 

International Symposium on Intelligent Control, 

pp. 1207–1212, june 2005.

[9] D. Bristow and A. Alleyne, “Monotonic 

convergence of iterative learning control for 

uncertain systems using a time-varying filter,” 

Automatic Control, IEEE Transactions on, vol. 

53, pp. 582–585, march 2008.

[10] H.-S. Ahn, K. Moore, and Y. Chen, 

“Monotonic convergent iterative learning 

controller design based on interval model 

conversion,” IEEE Transactions on Automatic 

Control, vol. 51, pp. 366–371, Feb. 2006.

[11] D. H. Nguyen and D. Banjerdpongchai, “A 

convex optimization approach to robust iterative 

learning control for linear systems with 

time-varying parametric uncertainties,” 

Automatica, vol. 47, no. 9, pp. 2039–2043, 

2011.

[12] N. Amann, D. H. Owens, E. Rogers, and A. 

Wahl, “An H1 approach to linear iterative 

learning control design,” International Journal of 

Adaptive Control and Signal  processing, vol. 

10, no. 6, pp. 767–781, 1996.

[13] D. Roover, “Synthesis of a robust iterative 

learning controller using an approach,” 

Proceedings of the 35th IEEE Conference on 

Decision and Control, vol. 3, pp. 3044–3049, 

dec 1996.

[14] K. L. Moore, H.-S. Ahn, and Y. Q. Chen, 

“Iteration domain  optimal iterative learning 

controller design,” International Journal of 

Robust and Nonlinear Control, vol. 18, no. 10, 

pp. 1001-1017, 2008.

[15] J. J. M. van de Wijdeven, M. C. F. Donkers, 

and O. H. Bosgra, “Iterative learning control for 

uncertain systems: Non-causal finite time 

interval robust control design,” International 

Journal of Robust and Nonlinear Control, vol. 

21, no. 14, pp. 1645–1666, 2011.

[16] S. Skogestad and I. Postlethwaite, Multivariable 

feedback control: analysis and design. John 

Wiley, 2005.

[17] S. Gunnarsson and Mikael Norrl ¨ of, “On the 

design of ILC algorithms using optimization,” 

Automatica, vol. 37, no. 12, pp. 2011–2016, 

2001.

[18] K. Barton and A. Alleyne, “A norm optimal 

approach to time-varying ILC with application 

to a multi-axis robotic testbed,” IEEE 

Transactions on Control Systems Technology, 

vol. 19, pp. 166-180, Jan. 2011.

[19] T. K. Nam and Dang Khanh Le, “A study on 

the control scheme of vibration isolator with 

electrical motor”, Journal of the Korean Society 

of Marine Engineering, vol. 36, no. 1, pp. 

133-140, 2012.

[20] M. Norrlof and S. Gunnarsson, “Time and 

frequency domain conver-gence properties in 

iterative learning control,” International Journal 

of Control, vol. 75, no. 14, pp. 1114–1126, 

2002.

[21] S. Boyd and L. Vandenberghe, Convex 

Optimization. Cambridge University Press, 2004.


	Optimal iterative learning control with model uncertainty
	Abstract
	1. Introduction
	2. Problem Formulation
	3. Robust ILC Design
	4. Interpretation of the Results asAdaptive ILC
	5. Simulation
	6. Conclusion
	References


