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            Abstract
          
        

        
          This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, time-series prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality. 
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      1. Introduction
      An important subset selection, which is a vital combinatorial optimization problem in multivariate statistics, is considered in this paper. The objective of the problem is to provide faster and more cost-effective predictors for the purpose of improving the prediction performance [1]. Its applications widely range from machine learning, time-series prediction, and multi-class classification to noise detection. 

      In this paper, we focus on the variable selection problem of multiple linear regression models. It is the selection of the optimal subset of variables in order to reliably construct a multiple linear regression model. There is no doubt that the allpossible regression approach called exact method is the best because it examines every possible model for the p independent variables. However, since this problem has NP-complete nature, it becomes more difficult to find the optimal solution by allpossible regression approach. When the number of variable generally exceeds 40, it is no longer practical to obtain the optimum by exact methods. Exact methods are based on the branch-and-bound (BNB) algorithm. Furnival and Wilson [2] proposed the earliest BNB algorithm for this problem of multiple linear regression model. Many authors have further developed the efficient BNB algorithms (Duarte Silva [3][4], Gatu and Kontoghiorghes [5], Hofmann et al.[6], Brusco et al. [7], and Pacheco et al.[8]). 

      Heuristic methods are more frequently used for the large size of the subset selection problem. Heuristic methods are usually classified into two categories: simple heuristics and meta- heuristics. Simple heuristic methods involve forward selection, backward elimination, and stepwise regression. The computing time for simple heuristics is fast, but the solution quality is generally poor. Metaheuristic methods have been developed to provide better solution quality than simple heuristics. Two typical metaheuristic methods have been used previously to solve the optimal subset selection problem: tabu search (TS) [9] and hybrid genetic and simulated annealing algorithm (GSA) [10]. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid GSA method produces a less accurate solution. 

      To overcome their shortcomings, we propose an improved tabu search to reduce moves of the neighborhood and to adopt an effective search strategy for neighborhoods. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. 

      The remainder of this paper is organized as follows. The model of subset selection problem is introduced in Section 2. In Section 3, the previous two metaheuristic methods, which are TS [9] and hybrid GSA [10] are briefly described, and we propose an improved tabu search in Section 4. In Section 5, the results of the computational experiments on both benchmark problem [10] and simulation data sets are presented. Finally conclusions are offered in Section 6. 

    

    

  
    
      2. The Subset Selection Problem
      Finding an appropriate subset of regressor variables for the model is usually called the subset selection (or variable selection) problem. It is the selection of the optimal subset of variables in order to reliably construct a multiple linear regression model. 

      Let p the number of independent variables in the full model and k the number of independent variables selected in the model. The subset selection model is as follows. 
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      There are 2p − 1 possible subset models. When p > 40, computational burdens to construct optimal subset model are increased exponentially due to the NP-complete nature of the problem. 

      For the subset selection problem, several measures with respect to the selection criteria have been proposed such as adjusted R2, Mallow’s Cp, and Akaike’s AIC (see Draper and Smith [11] and Mogomery et al.[12]). In this paper, we focus on the selection criterion of adjusted R2. The adjusted R2 is given by
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      where SSSk is residual sum of squares for the k-variable model, SST is total sum of squares, and n is the number of observations. 

    

    

  
    
      3. The Previous Metaheuristic Methods
      
        3.1 TS (Drezner [9])
        Tabu search, designed to escape from local optimum, is a metaheuristic algorithm for solving optimization problems.  Motivated by Glover [13] as an optimization tool applicable to nonlinear covering problems, the TS algorithm was originally proposed by Glover [14]. The basic idea of the TS is to expand its search beyond local optimality using adaptive memory. The adaptive memory is a mechanism based on the tabu list of prohibited moves. Use of the tabu list is one way to prevent cycling and guide the search towards unexplored region of the solution space. 

        The tabu search algorithm has been successfully applied to telecommunications path assignment [15], neural network pattern recognition [16], machine learning [17], just-in-time scheduling [18], and electronic circuit design [19]. 

        Drezner [9] developed a tabu search for the subset selection problem. The TS procedure is described in the following pseudocode. 

        
          

          

        

        
          
            	01: s = initial random solution
02: best = s
03: tabuList = ø
04: While ( i >= 30 ) Do
05: 　　　bestNeighbor = null
06: 　　　For ( s' in neighborhood(s) ) Do
07: 　　　　　　If ( not tabuCodition(s,tabuList)) and f(s') > f(bestNeighbor)) Then
08: 　　　　　　　　　bestNighbor = s'
09: 　　　　　　End If
10: 　　　End For
11: 　　　tabuList.push(featureDifferences(s,bestNighbor))
12: 　　　While( tabulist.size > 10 )
13: 　　　　　　　tabuList.removeFirst()
14: 　　　End While
15: 　　　s = bestNeighbor
16: 　　　If ( f(s) > f(best) ) Then
17: 　　　　　　best = s
18: 　　　　　　i = 1
19: 　　　Else
20: 　　　　　　i = i + 1
21: 　　　End If
22: End While
          

        

        

        Drezner [9] generated all neighborhoods by three moves, which are adding a variable, removing a variable, and swapping variables. For example, consider a set of p = 5 independent variables: full-set = {x1, x2, x3, x4, x5} and a subset of k= 2 variables: {x1, x2}. All neighborhoods of this subset consist of the following moves in Table 1. 

        
          Table 1: 
				
          

          
            All neighborhoods of subset {x1,x2}
          
          

        

        
          
            	Adding a variable: {x1,x2, x3},
{x1,x2, x4}, 　　　{x1,x2, x5}
Removing a variable: {x1}, {x2}
Swapping variables: {x2, x3}, {x2, x4}, {x2, x5},
{x1, x3}, {x1, x4}, {x1, x5}
          

        

        

        Drezner [9] also adapted the stopping criterion as the total number of 30 iterations without improving the best-so-far solution. The size of the tabu list was set to 10. 

      

      
        3.2 Hybrid GSA
        
          

          

        

        
          
            	01: population = initial random population
02: best = null
03: For ( i = 1 ; i <= 1000 ; i = i+1) Do
04: 　　　b = the best solution in population
05: 　　　If (f(best) < f(b) ) Then
06: 　　　　　　best = b
07: 　　　End If
08: 　　　new_population = null
09: 　　　For (j = 1 ; j <= 100 ; j = j+2) Do
10: 　　　　　　parent1 = selection(population)
11: 　　　　　　parent2 = selection(population)
12: 　　　　　　If (random(0,1) < 0.8) Then
13: 　　　　　　　children = crossover(parent1,parent2)
14: 　　　　　　　child1 = children[1]
15: 　　　　　　　child2 = children[2]
16: 　　　　　　Else
17: 　　　　　　　child1 = parent1
18: 　　　　　　　child2 = parent2
19: 　　　　　　End If
20: 　　　　　　child1 = mutation(child1)
21: 　　　　　　child2 = mutation(child2)
22: 　　　　　　△E1 = f(child1) – f(parent1)
23: 　　　If (△E1 > 0 or random(0,1) < exp(△E1 / t) Then
24: 　　　　　　　　　new_population[j] = child1
25: 　　　　　　Else
26: 　　　　　　　　　new_population[j] = parent1
27: 　　　　　　End If
28: 　　　　　　△E2 = f(child2) – f(parent2)
29: 　　　If (△E2 > 0 or random(0,1) < exp(△E2 / t) Then
30: 　　　　　　　　　new_population[j+1] = child2
31: 　　　　　　Else
32: 　　　　　　　　　new_population[j+1] = parent2
33: 　　　　　　End If
34: 　　　End For
35: 　　　population = new_population
36: 　　　t = 0.9*t
37: End For
          

        

        

        Lin et. al.[20] suggested the original version of GSA for solving some NP-hard problems such as knapsack problem, travelling salesman problem, and set partitioning problem.  Hasan [10] proposed a hybrid GSA for the subset selection problem, in which a genetic algorithm (GA) [21] is combined with a simulated annealing (SA) algorithm [22]. The pseudocode for the hybrid GSA algorithm is as follows. 

        The SA operator is incorporated into the generation of children produced by the genetic operators. It is applied to decide which two of the parents and children remain. That is, if children are better than parents, then the parents is replaced by the children. If parents are better, they are replaced with the chosen probability as shown in the pseudocode of GSA. 

        Hasan [10] suggested that the number of the population, crossover rate, mutation rate, maximum number of iteration, the initial temperature and the cooling rate is chosen as 100, 0.8, 0.1, 1000, 100 and 0.9, respectively. 

      

    

    

  
    
      4. The Proposed Method
      An improved tabu search (ITS) is proposed in this paper for solving the subset selection problem. The proposed method addresses shortcomings in two typical metaheuristic methods that have previously been developed. The tabu search method takes a large amount of computing time, due to many neighborhood moves, and the hybrid GSA method produces a less accurate solution. The proposed method is a fast tabu search that reduces moves of the neighborhood and adopts an effective search strategy for neighborhoods. 

      
        4.1 Neighborhood Moves
        The neighborhood of Drezner [9] was generated by three moves, which are adding a variable, removing a variable, and swapping variables. In Table 1 of the previous section, however, most of neighborhoods of swapping variables can be tentatively explored by the search engine with the neighborhood of only adding and removing a variable. For example, if the subset { x2, x3} generated by swapping variables is optimum, it can be also obtained by adding {x1, x2} to x3 variable, and then removing x1 variable from the resulting subset of {x1, x2, x3} . That is, it can be transitively searched from {x1, x2} to {x1, x2, x3} to { x2, x3} . This implies that the move of swapping may be replaced by two moves of adding and removing. 

        As the number of variable increases, the number of the neighborhood of swapping becomes larger. The number of neighborhood of swapping variables is totally k(p-k). 

        In order to reduce the computing time, we suggest that the neighborhood with swapping should be entirely excluded from the proposed method. Practically, from our computational results, we noticed that our search engine with only two moves, adding or removing a variable, plays a sufficient role in improving the current best solution. Consequently, the neighborhood strategy without swapping variables reduces a considerable amount of computing time. 

      

      
        4.2 Search Strategies for Neighborhoods
        Widmer & Hertz [23] and Tailard [24] proposed tabu search for the flow shop scheduling problem. They also suggested two specific search strategies: the best move strategy and the first move strategy. The best move strategy examines all neighborhoods and selects the best move that is not on the prohibited tabu list. The first move strategy examines the neighborhoods and selects the first move that improves the current best solution. If there is no first move that improves the current best solution, the first move strategy eventually becomes equivalent to the best move strategy. 

        As depicted in Figure 1, the procedure of improving the best solution can be divided into two phases: Phase-I and Phase-II.  In the Phase-I, the procedure for improving the best solution is rapidly progressed. After the solution reaches a local optimum through the tabu search, it is difficult to improve the local optimum. Accordingly, the procedure of improving the local optimum is slowly processed in the Phase-II

        
          
          

          Figure 1: 
				
          

          
            The Phase-I and Phase-II
          
          

          

        

        In the improved tabu search, the first move strategy is adopted. 

        In Phase-I, the first move strategy plays a role in rapidly improving the current best solution. 

        The pseudocode of the first move strategy is as follows. 

        
          

          

        

        
          
            	01: s = initial random solution
02: best = s
03: tabuList = ø
04: i = 1
05: While (i >= 30) Do
06: 　　　bestNeighbor = null
07: 　　　For ( s' in neighborhood(s) ) Do
08: 　　If ( s'∉tabulist and f(bestNeighbor) < f(s') )Then
09: 　　　　　　　　　bestNeighbor = s'
10: 　　　　　　　　　If ( f(best) < f(bestNeighbor)) Then
11: 　　　　　　　　　　　　Break
12: 　　　　　　　　　End If
13: 　　　　　　End If
14: 　　　End For
15: 　　　s = bestNeighbor
16: 　　　If ( f(s) > f(best)) Then
17: 　　　　　　best = s
18: 　　　　　　i = 1
19: 　　　Else
20: 　　　　　　i = i + 1
21: 　　　End If
22: 　　　　　　tabuList.push(s)
23: 　　　If ( tabuList.size > 10 ) Then
24: 　　　　　　tabuList.removeFirst()
25: 　　　End If
26: 　　　i = i + 1
27: End While
          

        

        

      

      
        4.3 Tabu List
        In Drezner [9], the tabu list contains a list of moves. In the proposed ITS method, the tabu list contains a list of solutions.  In our experiments, we noticed that our tabu list of solutions is more efficient than that of moves for this problem.

      

      
        4.4 Stopping Criterion
        In our experiments, stopping criterion is the total number of 30 iterations without improving the best-so-far solution. 

      

    

    

  
    
      5. Computational Results
      Comparative analytical tests were performed to compare the proposed method with the two previous metaheuristic methods. Experiments were initially performed using data sets obtained from the literature to evaluate their performance.  These data sets consisted of a small number of variables (less than 24). To further evaluate the performance of the proposed method for large number of variables, we randomly generated large data sets up to 100 variables. That is, the number of variable varies from 40, 60, 80 to 100. Results for the small literature data sets are reported in the Section 5.1.  Computational results for the large simulation data sets are summarized in the Section 5.2. All computational experiments were conducted on an Intel i7 PC with 3.4 GHz CPU and 8 GB RAM, and all source codes were implemented with R language. 

      
        5.1 The Benchmark Problem
        In Table 2, p, n, Best, and Freq. are defined as follows. 

        
          Table 2: 
				
          

          
            Experimental results of GSA, TS (Drezner [9]) and ITS (Improved TS)
          
          

        

        
          
            
              	Data Set
              	
                p
              
              	
                n
              
              	GSA
              	TS
              	ITS
            

            
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
            

          
          
            	Auto
            	11
            	65
            	0.543027
            	0.543027
            	10/10
            	0.543027
            	0.542852
            	8/10
            	0.543027
            	0.543027
            	10/10
          

          
            	Bankbill
            	15
            	71
            	0.994915
            	0.994915
            	10/10
            	0.994915
            	0.994898
            	7/10
            	0.994915
            	0.994915
            	10/10
          

          
            	Belle
            	7
            	27
            	0.649502
            	0.649502
            	10/10
            	0.649502
            	0.649502
            	10/10
            	0.649502
            	0.649502
            	10/10
          

          
            	Bodywomen
            	23
            	260
            	0.546150
            	0.546150
            	10/10
            	0.546150
            	0.546125
            	7/10
            	0.546150
            	0.546150
            	10/10
          

          
            	Horse
            	13
            	102
            	0.870527
            	0.870527
            	10/10
            	0.870527
            	0.870527
            	10/10
            	0.870527
            	0.870527
            	10/10
          

          
            	Papir
            	15
            	29
            	0.972387
            	0.972387
            	10/10
            	0.972387
            	0.972387
            	10/10
            	0.972387
            	0.972387
            	10/10
          

          
            	Pysical
            	10
            	22
            	0.964580
            	0.964580
            	10/10
            	0.964580
            	0.964580
            	10/10
            	0.964580
            	0.964580
            	10/10
          

          
            	US Crime
            	15
            	47
            	0.597745
            	0.597745
            	10/10
            	0.597745
            	0.897685
            	9/10
            	0.597745
            	0.597745
            	10/10
          

        

        

        p : the total number of independent variables. 
n : the number of sample data. 
Best : the Maximum of Radj2 for 10 trials. 
Mean : the Mean of Radj2 for 10 trials. 
Freq : the number of Best found by each method for 10 trials. 

        As the experimental results in Table 2 indicate, all methods find the optimal value of Radj2. In the value of Freq., however, the performance of TS is more or less worse than that of the proposed ITS method. 

      

      
        5.2 Simulation Data Sets
        To further test the performance of the ITS method, the simulation data sets were randomly generated as follows. 

        i) Independent variables were generated by normal distribution with a mean 0 and a standard deviation 1. 

        ii) Error terms were generated by normal distribution with a mean 0 and a standard deviation λσ, where σ is standard deviation of actual regression equation, and λ is a constant. 

        iii) The number of sample data is five times the total number of independent variables. 

        The value of E is given by the following Equation (3). 
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        where k is the number of sample data and is five times the total number of independent variables, and p is the total number of independent variables. 

        From the computational results shown in Tables 4 to 7, it is clear that the proposed ITS method outperforms the GSA and TS methods in terms of the computing time and solution quality. As shown in Figure 2, the ITS method is the fastest.  Specifically, when the value of p is 100, the GSA and TS methods take a considerable amount of computing time. As seen in Table 3, the computing time (sec.) of GSA, TS, and ITS is 233.8, 267.5 and 8.058, respectively. 

        
          
          

          Figure 2: 
				
          

          
            The Computing Time of GSA, TS and ITS
          
          

          

        

        
          Table 3: 
				
          

          
            The computing (sec.) of GSA , TS and ITS
          
          

        

        
          
            
              	p
              	GSA
              	TS
              	ITS
            

          
          
            	40
            	32.641
            	3.109
            	0.447
          

          
            	60
            	72.442
            	22.984
            	1.593
          

          
            	80
            	140.028
            	98.874
            	3.546
          

          
            	100
            	233.830
            	267.518
            	8.058
          

        

        

        
          Table 4: 
				
          

          
            Experimental results of GSA, TS and ITS (p=40, n=200)
          
          

        

        
          
            
              	
                E
              
              	
                λ
              
              	GSA
              	TS
              	ITS
            

            
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
            

          
          
            	0.25
            	0.25
            	0.936571
            	0.936571
            	10/10
            	0.936571
            	0.936571
            	10/10
            	0.936571
            	0.936571
            	10/10
          

          
            	0.65
            	0.743673
            	0.743665
            	9/10
            	0.743673
            	0.743616
            	8/10
            	0.743673
            	0.743673
            	10/10
          

          
            	0.5
            	0.25
            	0.936571
            	0.936571
            	10/10
            	0.936571
            	0.936571
            	10/10
            	0.936571
            	0.936571
            	10/10
          

          
            	0.65
            	0.705421
            	0.705421
            	10/10
            	0.705421
            	0.705360
            	6/10
            	0.705421
            	0.705421
            	10/10
          

          
            	0.75
            	0.25
            	0.943397
            	0.943397
            	10/10
            	0.943397
            	0.943353
            	7/10
            	0.943397
            	0.943397
            	10/10
          

          
            	0.65
            	0.760162
            	0.760162
            	10/10
            	0.760162
            	0.759768
            	7/10
            	0.760162
            	0.760162
            	10/10
          

        

        

        
          Table 5: 
				
          

          
            Experimental results of GSA, TS and ITS (p=60, n=300)
          
          

        

        
          
            
              	
                E
              
              	
                λ
              
              	GSA
              	TS
              	ITS
            

            
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
            

          
          
            	0.25
            	0.25
            	0.948695
            	0.948466
            	0/10
            	0.948737
            	0.948737
            	9/10
            	0.948737
            	0.948737
            	10/10
          

          
            	0.65
            	0.689304
            	0.690387
            	0/10
            	0.690549
            	0.690504
            	7/10
            	0.690549
            	0.690549
            	10/10
          

          
            	0.5
            	0.25
            	0.944630
            	0.944193
            	0/10
            	0.944781
            	0.944781
            	10/10
            	0.944781
            	0.944781
            	10/10
          

          
            	0.65
            	0.713936
            	0.712843
            	0/10
            	0.714963
            	0.714915
            	2/10
            	0.714963
            	0.714963
            	10/10
          

          
            	0.75
            	0.25
            	0.940132
            	0.939687
            	1/10
            	0.940132
            	0.940116
            	8/10
            	0.940132
            	0.940132
            	10/10
          

          
            	0.65
            	0.720683
            	0.718374
            	0/10
            	0.720867
            	0.720479
            	6/10
            	0.720867
            	0.720867
            	10/10
          

        

        

        
          Table 6: 
				
          

          
            Experimental results of GSA, TS and ITS (p=80, n=400)
          
          

        

        
          
            
              	
                E
              
              	
                λ
              
              	GSA
              	TS
              	ITS
            

            
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
            

          
          
            	0.25
            	0.25
            	0.944685
            	0.944299
            	0/10
            	0.945054
            	0.945049
            	7/10
            	0.945054
            	0.945054
            	10/10
          

          
            	0.65
            	0.733602
            	0.732183
            	0/10
            	0.736012
            	0.735993
            	8/10
            	0.736012
            	0.736012
            	10/10
          

          
            	0.5
            	0.25
            	0.942780
            	0.941569
            	0/10
            	0.944055
            	0.944046
            	7/10
            	0.944055
            	0.944055
            	10/10
          

          
            	0.65
            	0.696030
            	0.691928
            	0/10
            	0.70374
            	0.703740
            	10/10
            	0.703740
            	0.703740
            	10/10
          

          
            	0.75
            	0.25
            	0.935835
            	0.910728
            	0/10
            	0.939282
            	0.939282
            	10/10
            	0.939282
            	0.939282
            	10/10
          

          
            	0.65
            	0.659400
            	0.655344
            	0/10
            	0.674227
            	0.674207
            	9/10
            	0.674227
            	0.674227
            	10/10
          

        

        

        
          Table 7: 
				
          

          
            Experimental results of GSA, TS and ITS (p=100, n=500)
          
          

        

        
          
            
              	
                E
              
              	
                λ
              
              	GSA
              	TS
              	ITS
            

            
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
              	
                Best
              
              	
                Mean
              
              	
                Freq.
              
            

          
          
            	0.25
            	0.25
            	0.937582
            	0.937260
            	0/10
            	0.938899
            	0.938883
            	4/10
            	0.938899
            	0.938899
            	10/10
          

          
            	0.65
            	0.712726
            	0.711461
            	0/10
            	0.719262
            	0.719206
            	6/10
            	0.719262
            	0.719262
            	10/10
          

          
            	0.5
            	0.25
            	0.942780
            	0.941569
            	0/10
            	0.944055
            	0.944046
            	7/10
            	0.944055
            	0.944055
            	10/10
          

          
            	0.65
            	0.696030
            	0.691928
            	0/10
            	0.703740
            	0.703740
            	10/10
            	0.703740
            	0.703740
            	10/10
          

          
            	0.75
            	0.25
            	0.947111
            	0.943321
            	0/10
            	0.947830
            	0.947830
            	10/10
            	0.947830
            	0.947830
            	10/10
          

          
            	0.65
            	0.728375
            	0.722315
            	0/10
            	0.732835
            	0.732833
            	9/10
            	0.732835
            	0.732835
            	10/10
          

        

        

      

    

    

  
    
      6. Conclusions
      In the subset selection problem, all-possible regression or exact algorithms, such as branch-and-bound programming, obtain the global optimum, but their computational feasibility diminishes for a large number of variables (p > 40) due to long processing times. Simple heuristic methods, often used in statistical SAS programs, include forward selection, backward elimination, and stepwise regression methods. Their computing time is fast, but solution quality is generally poor. 

      In general, metaheuristic methods provide better solution quality than simple heuristics. In the subset selection problem, two typical metaheuristic methods, TS and hybrid GSA, have been used. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, due to many neighborhood moves, and the hybrid GSA method produces a less accurate solution. 

      To overcome the shortcomings of these methods, an improved tabu search (ITS) was developed to reduce moves of the neighborhood and to adopt an effective search strategy for the neighborhoods. To evaluate the performance of the proposed ITS method, comparative analytical tests were performed on small literature data sets and on large simulation data sets. Computational results showed that the proposed method outperforms the previous metaheuristics in terms of the computing time and solution quality. 
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