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Abstract: Small drones of various sizes are used in numerous fields, including commerce, reconnaissance, and offensive attacks. Major 

facilities such as security areas of port, power, and offshore plants urgently need to develop solutions for detecting drones as an active 

countermeasure against small drone attacks because small drones used for military and terrorism pose a significant threat. It is not easy 

to detect various drones such as invasive or threatening ones, though recent developments have made it possible to detect them using 

three-dimensional radar. Therefore, this paper develops threatening drone identification system, which consists of two components: 

One is a software component for identifying threatening drones among various ones and the other is a hardware component for the 

system. The former uses well-known YOLO(You Look Only Once) (v7) model and the latter comprises a PC for running the model 

and an SWIR (Short-Wave InfraRed) camera for surveillance. Datasets for training and evaluation are constructed by hand from air-

borne videos taken drones including threating one and is labelled by two types: normal and threatening. The datasets are comprised of 

3,992 color images and 4,410 thermal images, which are trained separately. Through experiments, we have shown that mAP@.5 and 

mAP@.95 are 0.999 and 0.753 (0.999 and 0.760) for color images (for thermal images), respectively.  Consequently the proposed 

system is helpful in identifying threating drones. 
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1. Introduction 
Drones are radio wave-guided small, unmanned aerial vehicles 

in fixed or multi-copter forms form and have recently been uti-

lized for a range of applications including leisure, video shooting, 

delivery, and so on although they developed for military purposes 

at first [1]. In particular, small military drones used for surveil-

lance, penetration, and terror attacks are making global issue [2], 

but active countermeasures against reconnaissance or attacks 

through small drones are very lack. Therefore, it is urgent to de-

velop technologies related to dangerous or threatening drone 

identification, which follows drone detection.  Most existing 

anti-drone systems and many researches, however, only detect 

drones using many sensors with radar and LiDAR (Light Detec-

tion And Ranging) [3]. The anti-drone systems have shortcom-

ings in that they are complex and expensive because of their nu-

merous sensors.  

In order to alleviate the problem, in this paper, we develop 

threatening drone identification system, which consists of two 

components: One is a software component for identifying threat-

ening drones among various ones and the other is a hardware 

component for the system. The former uses well-known YOLO 

(v7) model and the latter comprises a SWIR (Short-Wave Infra-

Red) camera for surveillance and a PC for running the model.  

The YOLO model is based on CNN (Convolutional Neural Net-

work) [4] and can detect objects in real time with localization and 

classification at 1-stage [5]. The camera takes color and thermal 

images on a fine day (or daytime) and a bad weather (low light), 

respectively.  

Datasets for identifying threatening drones are not publicly 

available and so we construct them by hand by taking airborne 

videos and labeling two types with normal and threatening. The 

datasets are comprised of 3,992 color images and 4,410 thermal 

images, which are trained separately. Through experiments, we 

have shown that mAP@.5 and mAP@.95 are 0.999 and 0.753 
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(0.999 and 0.760) for color images (for thermal images), respec-

tively.  In terms of time performance, the identification time for 

a frame is 11.9 ms and the proposed system can identify about 84 

frames per second. Consequently, it seems to be real-time and is 

helpful in identifying threating drones. 

This paper is organized as follows: In Chapter 2, we describe 

related works on YOLO, drone detection and identification; In 

Chapter 3 and Chapter 4, we illustrate the proposed system in 

detail and describe process of datasets construction and experi-

ments, respectively; finally in Chapter 5, we draw conclusion 

against our observations and discuss future studies. 

2. Related work
2.1 YOLO (You Only Look Once) 

Object detection is to identify and locate objects in images or 

videos and is mainly based on CNN [4]. For object detection, a 

2-stage detector is widely used for object classification and loca-

tion, while a 1-stage detector carries out the two stages simulta-

neously. The 1-stage detector provides much faster detection 

speed in spite of lower accuracy than the 2-stage detector. 

Figure 1: Example of a YOLO algorithm [5] 

Figure 1 shows the process of the YOLO model, which is a 1-

stage detector capable of real-time object detection [5]. YOLO 

divides input images into S × S  size and then predicts anchor 

boxes based on confidence scores in a predefined form for given 

input images while passing through several levels. Next, YOLO 

chooses locations with high object reliability and predicts labels 

of objects.  

YOLO has been continuously updated across various versions. 

YOLO v1 [5] had shown relatively-lower accuracy and many lo-

calization errors because boxes were identified based on a per 

cell basis, not using an anchor box. It was able to identify large 

objects well, but not small objects. Regardless of this shortcom-

ing, detection speed was fast. YOLO v2 [6] maintained the fast 

speed of the previous version, using the Darknet-19 model as a 

backbone and improved its performance using batch normaliza-

tion, high resolution classifier, and anchor box. YOLO v3 [7] en-

abled multi-label classification for each class. Its speed was slow 

relatively although its accuracy is increased using Darknet-53 

compared to Darknet-19. In YOLO v4 [8], CSPDarknet53 was 

used as the backbone, and BoF (Bag of Freebies) was used to 

obtain higher accuracy without increasing the inference time. To 

improve performance, BoS (bag of specials), SAM (Self-Atten-

tion Module), and PAN (Path Augmented) were also used. YOLO 

v7 [9] is the most advanced model of the YOLO series and pro-

posed the trainable BoF method that can improve accuracy with-

out increasing inference cost during real-time object detection.  

2.2 Drone detection and identification 
The work [10] on drone detection using sound signals comple-

mented problems of existing studies on drone sound detection. It 

collected noises from the surrounding environment separately, 

and then detected drones even in a noisy environment by sepa-

rating drone signals from environmental noise. Using the Mel 

Spectrogram feature extraction and CNN deep learning model, 

drones were detected with 98.55% accuracy. The work [11] took, 

divided, and preprocessed drone images and trained the deep 

learning model. The model detected drones and then located 

them though image-processing. And the other work [12] ob-

served the RF communication band, while detecting communi-

cation protocols using the characteristics of using RF signals 

when controlling drones wirelessly. The work [13] that detected 

drones using only a camera and deep learning used the short-

wave length infrared (SWIR) camera and YOLOv4 model as a 

deep learning model. The study obtained 2, 921 images of da-

tasets using only thermal images, showing great performance for 

detecting drones with 98.17% precision and 98.65% recall. How-

ever, this works didn’t include identification of various types of 

drones, focusing solely on simple drone detection. 

The work [14] involved research on the development of 

EO/IR(electro-optical/Infrared)-connected radar to identify ille-

gal drones of unmanned aerial vehicles. By reflecting the charac-

teristic of gyro sensors of Micro Electro Mechanical Systems that 

are sensitive to specific frequency, the work [15] developed a 

system capable of identifying and sending airwaves to disturb 

sensors that control drones. For carrying out a drone ID project 
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for drone identification and tracking, the work [16] adopted the 

method of direct communication with UTM servers through 

wireless networks including GSM, satellites, and LoRa, or re-

layed them to the UTM by receiving RF beacon signals. Existing 

works on drone identification have identified drones using nu-

merous sensors. 

3. Threatening drone identification
In this chapter, we propose a threatening drone identification 

system, which consists of two components: One is a software 

component for identifying threatening drones among various 

ones and the other is a hardware component for the system. The 

former uses well-known YOLO (v7) model and the latter com-

prises a PC for running the model and a SWIR (Short-Wave In-

fraRed) camera for surveillance. Figure 2 shows the basic pro-

cess flow of the proposed system, which moves forward along 

with image forwarder, image interpreter, and drone monitoring in 

sequence. We will go through them one by one in next subsec-

tion. 

3.1 Image forwarder 
Image forwarder consists of SWIR camera. The camera (FU-

JIFILM’s SX800 model) takes color videos in fine day (or day-

time) and thermal images (850 mm wavelength) at night (or bad 

weather). The captured videos are divided into frames (or im-

ages), which are fed to the trained deep learning model (see 3.2). 

3.2 Image interpreter 
Image interpreter is based on the YOLO (v7) model [9]. We 

use the existing YOLO (v7) model as it is. In general, YOLO 

framework is comprised of three components as shown in Figure 

2: Backbone, Head, Neck. The backbone extracts feature of an 

image and feeds them to the head through the neck. The neck 

collects feature maps extracted by the backbone and creates fea-

ture pyramids. Finally, the head consists of output layers that 

have final detections. YOLO (v7) improved speed and accuracy 

by addressing architectural reforms: E-ELAN (Extended Effi-

cient Layer Aggregation Network) and Model Scaling for Con-

catenation-based Models. The E-ELAN is the computational 

block in the backbone and allows the framework to learn better. 

The model scaling is performed to fit these requirements such as 

resolution, width, and depth of images. One of the major changes 

in the YOLO (v7) is Trainable BoF (Bag of Freebies), which in-

crease the performance of a model without increasing the training  

Figure 2: Flowchart of the deep learning-based drone recogni-

tion system using SWIR camera 

cost. YOLO (v7) has introduced two BoF methods: Re-parame-

terization convolution and Coarse-to-fine lead head guided label 

assigner.  The former increases the training time bur improves the 

inference results and use two types of models and module level 

re-parametrization. The latter contains lead head and auxiliary 

head, which are interactive in order to predict labels from coarse 

labels (lead head) to fine labels (auxiliary head). 

As mentioned before, we use the architecture YOLO (v7) as it 

is in order to save time and effort for tuning hyper-parameters 

and train the model using datasets constructed by hand (see 4.1). 

The model is trained to identify two classes: normal and threat-

ening and infer threatening drones from detected drones when the 

confidence score is above the certain threshold. 

3.3 Drone monitoring 
The drone monitoring is the process that helps administrators 

monitor the state of threatening drone identification. The drone 
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monitoring receives many types of signals like normal drone, 

threatening drone, some other objects and displays them on the 

administrator screen. During monitoring, an alarm should alert 

the administrators to track the threatening drone continuously, 

which is displayed in a different color like red if a threatening 

drone would be identified.  The drone monitoring tries to locate 

the drone in the next frame based on its location at the current 

frame and seeks around the neighborhood of the current drone's 

position. This function helps detect a drone in a certain region 

instead of the entire frame [17]. 

4. Experiments and performance evaluation
In this chapter, we describe how to construct datasets, experi-

mental environments, and performance evaluation of threatening 

drones in the next subsection in subsequence.   

4.1 Dataset 
We assume that a threatening drone is attached to a dangerous 

object because actual threatening drones are very rare and it is 

not easy to get images of the threatening drones. For training the 

YOLO (v7) model, we take images of flying drones and then la-

bel them. For dataset, both color and thermal images were used 

as shown in Table 1.  

Table 1: Statistics of image collection 

Color image Thermal image 

No. of frames 34,076 26,517 

image size 1920 * 1080 1920 * 1080 

Shooting time 18 min 15 min 

No. of labelled images 3,992 4,410 

Color images are suitable in the fine day (or daytime) with suf-

ficient light, but it is difficult to identify drones with color images 

on cloudy days (or days with low light). So, we also use thermal 

images to complement this problem. Thermal images provide 

better quality than color images in case of cloudy days (or days 

with less light) because they use infrared light. We use three 

drones for every shooting and label with normal and threatening. 

We consider one drone with green box assumed to be dangerous 

object as threatening drone and the other two drones as normal 

drone. We label the drone with attached the green box as 'threat-

ening', and the other two drones as 'normal'. We obtained 34,076 

color images of 1920*1080 size for 18 minutes and 26,517 ther-

mal images of same size for 15 minutes. Because frames shot too 

close show little difference in image, we utilize images at inter-

vals of five frames as data. We don’t use images that were blurred 

or that were difficult to distinguish with the naked eye due to the 

cutting of drones.  

Figure 3:  Examples for images 

Figure 4: Labeling images 

Figure 5: A part of the data label file 
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Figure 3 is an example of color image (a) and thermal image 

(b) of drones. We let the drone rotate in place or move little by 

little around. 

Data labeling was conducted in a bounding box form to fit the 

drone size as much as possible by hand. As shown in Figure 4, 

we label all images with the LabelImg [18] tool. We separately 

constructed the dataset of color images and thermal images. 

Label information for each image is stored as text files as 

shown in Figure 5. Each line consists of LABEL_ID, X_CEN-

TER, Y_CENTER, WIDTH, and HEIGHT. LABEL_ID, values 

assigned numbers to labels, is numbered from 0 in the order of 

initially stored labels. We used with ‘threatening’ label numbered 

as 0 and ‘normal’ as 1. X_CENTER, the X-coordinate of the cen-

ter of labeled objects, is relative values divided by image width. 

Y_CENTER, the Y-coordinate of the center of labeled objects, is 

relative values with coordinate values of objects divided by im-

age height. WIDTH, bounding box width values of objects, is 

relative values with bounding box width values divided by image 

width. HEIGHT, bounding box height values, is relative values 

with bounding box width values divided by image height. 

4.2 Experiment environments 

Training was conducted on the same model with ther-

mal and color datasets, respectively. Table 2 and 3 show 

hyper-parameters for training and software versions on 

the software component respectively. 

Table 2: Hyper-parameters 

Hyper-parameters 
Epochs 300 

Batch size 16 
Input image size 416 * 416 

Table 3: Software environments 

Software Version no. 
Ubuntu 18.04.6 

Matplotlib 3.2.2 
Numpy 1.18.5 

Opencv-python 4.1.1 
Pillow 7.1.2 

PyYAML 5.3.1 
Requests 2.23.0 

Scipy 1.4.1 
Torch 1.7.0 

Torchvision 0.8.1 
Tqdm 4.41.0 

Protobuf 4.21.3 

As shown in Table 2, we trained model for 300 epochs and set 

batch size as 16. Images were rescaled to 416*416 in size before 

their input. For the sake of convenience, we used the same hyper-

parameters for thermal and color images. The software environ-

ments used for training, as shown in Table 3, represents the ver-

sion of each package. We use the same software environment for 

training color and thermal images. 

Table 4 shows hardware environments of CPU and GPU. We 

also use the same hardware environments for training and infer-

ence. In the future, we would like to recommend different envi-

ronments for training and inference because training usually 

takes a lot of time while inference do not take such much time in 

environments like embedding systems.  

Table 4: Hardware environments 

Hardware environment 
CPU Intel® Xeon® CPU E5-1660 v3 @3.00GHz 
GPU TITAN RTX 

We evaluate the trained model with precision, recall, mAP@p, 

where p∈(0,1) is the IoU (Intersection over Union) as threshold. 

The precision is the ratio of drones that are correctly detected 

among true drones and the recall how accurately the model pre-

dicts images including drones.  Mean Average Precision (mAP) 

[5] is a metric used to evaluate object detection models such as 

YOLO, etc. and is calculated by finding Average Precision (AP) 

for each class and then average over a number of classes.  The 

AP is calculated as the weighted mean of precisions at each 

threshold; the weight is the increase in recall from the prior 

threshold p. Therefore, mAP@.5 and mAP@.95 mean the mAP 

for the IoU of 0.5 or less and between 0.5 and 0.95, respectively. 

4.3 Performance Evaluation 
 

Figure 6 shows curves of loss values and performance during 

training color and thermal images for each 300 epochs, respec-

tively. For training and validating, losses tended to decrease, and 

precision, recall, and mAP tended to increase. This seems to be 

well trained. 

Figure 7 is examples of the model’s identification results for 

color and thermal images, respectively. For both images, we can 

detect and identify all drones for each label. In particular, dan-

gerous drones were identified with confidence scores of about 

0.90 or more. 
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Figure 6: Curves of losses and measures for images 

Figure 7: Examples of drone identification for image 

Table 5 and 6 are mAP performance for color and thermal im-

age test sets, respectively. All is the average of threatening and 

normal. We obtain that mAP@.5 and mAP@.95 are 0.999 and 

0.753 (0.999 and 0.760) for color images (for thermal images).  

Table 3: Performance evaluation for color test images 

mAP@.5 mAP@.95 
all 0.999 0.753 

threatening 0.999 0.809 
normal 0.998 0.697 

Table 4: Performance evaluation for thermal test images 

mAP@.5 mAP@.95 
all 0.999 0.76 

threatening 0.998 0.792 
normal 0.999 0.729 

Time taken to detect and identify drones per frame is 11.9 ms. 

We can identify drone at about 84 frames per second, making 

real-time surveillance possible. 

A false alarm is a false positive which incorrectly indicates that 

malicious activity is occurring (also called a type I error) and is 

very important in threatening drone detection. In the case of the 

IOU of 0.5, mAP is almost 1.0 and then the false alarm is almost 

zero. Consequently the proposed model can achieve better accu-

racy with lower false alarm rate. As shown in Table 5 and 6, a 

loose IoU threshold results in a higher AP score than a strict IoU 

threshold as usual in most cases. 

5. Conclusion
This paper presents a system for identifying drones using 

SWIR camera and YOLO (v7) model. Drones can be identified 

using color images in a fine day (or daytime with much light), 

but identifying them with color images in bad weather (or at night 

with little light) is challenging. Therefore, the thermal images 

were used. We collected and labeled drone for color images and 

thermal images. The datasets were separately learned for the 

same model. 

For color and thermal image sets, we observed that mAP@.5 

and mAP@.95 are 0.999 and 0.753 (0.999 and 0.760) for color 

images (for thermal images), respectively. A detection speed of 

approximately 84 fps enables real-time drone identification. 

Consequently, it seems to be real-time and is helpful in identify-

ing threating drones. However, as shown in Figure 6, loss tended 

to overfit rapidly. This limitation was caused by the inability to 

create a large amount of data, as data collecting and labeling take 

a long time. 

In future works, experiments are expected to be conducted var-

ious environments to secure more datasets for better drone iden-

tification performance and to overcome the limitations. mAP can 
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contain several errors such as duplicate detection, misclassifica-

tion, mislocalization, etc. and then the detailed analysis for errors 

should be required. 
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