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Abstract: Motion control schemes are generally classified into three categories (point stabilization, trajectory tracking, and path 

following). This paper deals with the problem which is associated with the initial deployment of a group of Unmanned Surface 

Vehicle (USVs) and corresponding point stabilization. To keep the formation of a group of USVs, it is necessary to set the re-

lationship between each vehicle. A forcing functions such as potential fields are designed to keep the formation and a graph 

Laplacian is used to represent the connectivity between vehicle. In case of fixed topology of the graph representing the com-

munication between the vehicles, the graph Laplacian is assumed constant. However the graph topologies are allowed to change 

as the vehicles move, and the system dynamics become discontinuous in nature because the graph Laplacian changes as time 

passes. To check the stability in the stage of deployment,  the system is modeled with Kronecker algebra notation. Filippov’s 

calculus of differential equations with discontinuous right hand sides is then used to formally characterize the behavior of 

USVs. The stability of the system is analyzed with Lyapunov’s stability theory and LaSalle’s invariance principle, and the val-

idity is shown by checking the variation of state norm. 
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1. Introduction

A Unmanned Surface Vehicle (USV) is an autonomous or 

remotely operated system which is deployed and  a wide area 

of water surface. Since the master plan was first officially re-

leased by US Navy in 2007, USVs have received much atten-

tion by ocean engineers [1]. As global positioning systems 

have become more compact and affordable, USVs have be-

come more capable. As a group of autonomous vehicles, 

USVs are successfully deployed for military operations, search 

and rescue missions and environmental monitoring as well as 

tactical oceanography [2]-[4]. 

In particular, USVs can be used as a mobile interface be-

tween heterogeneous unmanned systems such as unmanned un-

derwater vehicles (UUVs) under the sea surface and unmanned 

aerial vehicles (UAVs) over the sea surface. Acoustic devices 

are used to communicate with UUVs, and signals are con-

verted and transferred to UAVs via radio frequency 

communication. Air to underwater data transmission is also a 

feasible example of USV as a mobile interface.

USVs can be deployed to form a decentralized network, dis-

tributed over a spatial area, to provide real-time sensory in-

formation with the benefits of scalability, modularity and 

robustness. A dynamic topology permits the formation of the 

USVs to optimally position and align its sensors to improve 

sensing metrics such as error covariance and signal-to-noise ra-

tio (SNR), fast response to dynamically changing 

environments. Such a formation can then be made autonomous 

giving each USV decision making capabilities based on the in-

formation which is collected by its own sensors.

A human in the loop provides initial directives to a group 

of USVs regarding location, area of surveillance/mapping and 

data requested, and USVs then configure their operational 

mode depending on their required function. Deployment of 

USVs ultimately depends on the ability to position each ve-

hicle so that it is able to collect data from its surrounding en-

vironment in an optimal manner. There are situations where 

the USVs will reach equilibrium with respect to their spatial 

distribution (topology), in which case the formation can essen-

tially become stationary once such a configuration is reached.

Figure 1 shows the transition from the arbitrary initial USVs 

positions to the desired final distribution. To reach this final 

configuration, each vehicle exchanges information with a small 

subset of the formation, specifically those USVs which are 

within the range of its wireless communication or sensor 
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capability. As the range of such hardware may be limited, the 

basic problem faced by a group of USVs is how to use local 

information to decide one’s motion so that a global goal is 

achieved. This is generally achieved by coming up with 

force-laws that translate the position and/or velocity in-

formation being exchanged by the vehicles into force com-

mands for their actuators. [5] presents some force-laws which 

cause a group of agents to arrange itself in a pattern of hex-

agons or squares. 

Figure 1: Move from their arbitrary initial positions to 

the desired topology

In literatures, motion control scenarios of USVs are usually 

classified into three main categories (point stabilization, tra-

jectory tracking, and path following), along with the concept 

of path maneuvering [6]. Among those control issues, the goal 

of point stabilization is to stabilize the vehicle zeroing the po-

sition and orientation error with respect to a given target point 

with a desired orientation (in the absence of currents). The 

goal cannot be achieved with smooth or continuous state-feed-

back control laws when the vehicle has nonholonomic 

constraints.

Because of hardware constraints, force-laws cease to be ef-

fective when the robots move a certain distance away from 

each other and the graph representing the communication be-

tween vehicles keeps changing as the USVs move. Therefore, 

in addition to the final steady state of the formation, in-

formation about the transients is required.

In the following sections, stability properties of the for-

mation are analyzed to determine transient properties,  tracking 

performance and capability to reject noise or disturbances. 

2. Mathematical Preliminaries

2.1 Graph Theory

A graph G consists of a set of unique vertices, denoted V, 

and a set of edges, denoted E. Each element of the set E 

connects two distinct elements of the set V, meaning that 

the graph has no self-loops. We also assume that each 

element of E is unique. Elements of the set E, and hence 

the graph they define, can be directed or undirected. In our 

work, the graphs we define are always undirected. If every 

possible edge between all possible pairs of the elements of 

V exists, the graph is said to be complete.

A path on G of length N from  to  is an ordered set 

of distinct vertices  such that  ∈, 

∀∈. A graph in which a path exists from every vertex 

to every other vertex is said to be connected. A graph in 

which disjoint subsets of vertices exist that cannot be joined 

by any path is termed disconnected. An N-cycle on G is a 

path for which   . 

   

(a) Connected      (b) Disconnected     (c) Complete

Figure 2: Connected, Disconnected, and Complete Graphs

A graph without any cycle is said to be acyclic. A graph 

with the property that the set of all cycle lengths has a com-

mon divisor k > 1 is said to be k-periodic. The relationship 

between graph theory and control theory makes use of ma-

trices associated with a graph. For the purpose of defining 

these matrices, it is assumed that the vertices of  are enum-

erated, and each is denoted  . Given a graph with vertex set 

V and edge set E , the Adjacency Matrix Ad is defined as,

   i f∈

 otherwise
          (1)

Since no self loops are allowed,    ∀. The graph 

Laplacian is then defined as

L = D - Ad,                                        (2)

where D is a diagonal matrix whose   diagonal entry is the 

number of neighbors of  , i.e. the number of other vertices it 

is connected to. For the graph shown in Figure 2 (a), the 

Laplacian will be

 









   
   
   
   

                                 (3)

Note that the rows of L each sum to zero. 
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2.2 Differential Equations with Discontinuous Right 

Hand Side

Let us consider the vector differential equation

  ,                                          (4)

where    ×  → is discontinuous but measurable and 

essentially locally bounded. In mathematics, a generalized con-

cept of ordinary differential equation is expressed as differ-

ential inclusion. 

A vector function ⋅  is called a solution of Equation 

(4) on   if ⋅  is absolutely continuous on   and 

for almost all ∈     

                                

∈                                      (5)

where 

 ≡ 
  




                 (6)

and 


≡ denotes the intersection over all sets of natural 

number  of Lebesgue measure(  zero.   is a convex clo-

sure of the function .   is an open ball of radius   centered 

at  . Equation (6) also means that there exist  ⊂ ,  

   such that for all ⊂  , 

 ≡lim → ∉∪         (7)

Figure 3: Solutions of Differential Equations with 

Discontinuous RHS

The content of Filippov’s solution is that the tangent vector 

to a solution, where it exists, must lie in the convex closure of 

the limiting values of the vector field in progressively smaller 

neighborhoods around the solution point. It is important in the 

above definition that sets of measure zero are discarded. This 

technical detail allows solutions to be defined at points even 

where the vector field itself is not defined, such as at the in-

terface of two regions in a piecewise defined vector field 

(Figure 3). More details on this subject are available in [7][8].

3. System Modeling

Let us start analysis by considering a network of a set of 

USVs, each having standard second order linear dynamics with 

viscous friction. Each USV has wireless communication de-

vices which can function to a distance of say r units. All ve-

hicles weigh 1 unit and are assumed to have identical dynam-

ics and communication devices. As USVs move on sea sur-

face, analysis is taken for 2-dimensional space. Then for i-th 

vehicle,

































   
   
   
   































 
 
 
 




 






  

               (8)

Here c is the viscous constant and   and  is the force 

that each USV exerts in the x and y direction respectively to 

propel itself so that the USV can reach to the final position 

with respect to other vehicles . The output is its current posi-

tion   and  . So

 



 









 


   

   
                            (9)

Let  be number of vehicles in the network, and  be 

number of outputs per a vehicle = 2. It is assumed that the 

forces   and  have a certain structure as following.

    
∈

     

   
∈

    

          (10)

In other words, 

   
∈

                  (11)

Here  is the stacked state vector of the entire system, i.e. 

 
  

 


 and   
→  are possibly non-linear 
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functions of . The summation is over all the j "neighbors" 

of vehicle i, that is to say all the vehicles in the formation at 

a distance less than r units from the vehicle i. Let us consider 

a USVs where each vehicle behaves as if they are attached by 

springs of stiffness  and unstretched length r with their 

neighbors. 

Then, the force being computed by each vehicle is,

   
∈




 

 
∈




  

∈

 

  
∈

 

             (12)

where  =  
  

 , the distance between 

vehicles i and j. By setting  


 


, and with 

Kronecker algebra notation,

 
⊗

⊗,                           (13)

But,

 ⊗


⊗                          (14)

where   
 … 

  and L is the graph Laplacian de-

fined above. After substituting Equation (14) in Equation (13), 

we have

  
⊗ 

⊗⊗


⊗ 


⊗

      (15)

Using the property ⊗⊗  ⊗ , if the di-

mensions are appropriate and due to the fact that the number 

of inputs to each node equals the number of outputs, Equation 

(15) can be simplified to 

  
⊗ ⊗ 

⊗           (16)

Now, consider the first part of Equation (16),

 
⊗ ⊗                    (17)

Now let us consider the imaginary center of gravity (CoG) 

of the USV formation. Since the dynamics in the y-direction 

are analogous to the ones in the x-direction, we only write out 

the x dynamics of the system below. Then,

  



  



, 
  



  





and, 

  



  



,   



  



 

Therefore,

  



  



                              (18)

Because the term 
  



 is equivalent to   and  is 

the eigenvector of the symmetric matrix L corresponding to 

the zero eigenvalue, the second term in Equation (18) is zero. 

Thus,

                                           (19)

If the initial condition of the formation is such that 


  



   and 
  



  , the CoG of the entire system is 

stationary. Equation (19) also shows that the dynamics of the 

CoG is not subject to inter-vehicle forces. The CoG of the 

system, if it is subject to a non zero initial velocity condition, 

will eventually come to rest.

Now if we define   





 


 where


  


 


  


 

                       (20)

Then, by substituting Equation (19) into Equation (17), we 

have

 
⊗⊗                          (21)

Now    
 

 


. Therefore, we have

⊗  ⊗

 ⊗  
 

  


      (22)
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For the matrices B, C and any L, the second term of 

Equation (22) is zero. This is because the 1T vector is and ei-

genvalue of L corresponding to the zero eigenvalue, and we 

have ⊗  ⊗  ⊗ . Hence, we can 

rewrite Equation (21) as

 
⊗ ⊗                      (23)

Even though Equation (23) looks like a linear dynamical 

equation, the graph Laplacian is not constrained to be 

constant. It varies as a discontinuous function of the vehicle 

positions and thus the right hand side of this equation is 

discontinuous. The set of points at which it changes value are 

ones where one or more pairs of vehicles in the formation are 

at a distance r from each other. Between such points, there is 

a continuum of points where the Laplacian is constant.

It is notable that since the number of USVs is finite, there 

are a finite number of possible graphs, connected or 

disconnected. Thus there is a finite number of points at which 

a change of Laplacian takes place. 

Let  be the set of zero measure of points at which the L 

matrix switches value and  ,    be the continuous 

sets of non-zero measure in which the graph is constant with 

the Laplacian . Then the absolutely continuous function 

  is a Filippov solution ([7] and Equation (6)) of Equation 

(23) if it satisfies the differential inclusion,

∈                                       (24)

When the current state of formation ∈, then 

  . At the points of discontinuity, the de-

rivative  lies in the convex hull of the points representing 

the limits of the value of  as Z approaches the point of dis-

continuity from various directions. So

  
  







⊗⊗  ≥




 

 
⊗

  



⊗










  









  












where   . At points ∈,    and all other 

  .  and  are   and   corresponding to the 

graph represented by the Laplacian . 

4. Stability Analysis

To check the stability of the system described in Equation 

(23) which has a dynamic equation with discontinuous right 

hand side, we start with the Lyapunov Stability Theorem.

Lyapunov Theorem: Let    be essentially locally 

bounded and ∈   in a domain  ⊂    con-

taining    . Let ⋅ be a Filippov solution of the 

system. Let     →  be a Lipschitz, regular function. 

Then, 

1.   is asolutely continuous,  exists almost every-

where and 




∈ 

where 
  

∈  

 , and ∂  is the 

generalized gradient of  . In addition, the function   

satisfies that   , and  ≥  in .

2.  
 ≤  in D implies    is a stable equilibrium 

point.

3.
   in  implies    is an asymptotically 

stable equilibrium point.

Proof: See [9] and [10]. ￭
We not state the stability of the system described in the 

previous section.

Corollary 1: The dynamic system represented by Equation 

(23) is stable.

Proof:  Let us choose the following Lyapunov function

  




 
  


  


        (25)

where  ,  , ,  are the vectors in 
  representing 

the positions and velocities of the vehicles with respect to the 

CoG. This function is defined on the domain D = 
 . The 

matrix L, representing a connected graph, has a single zero ei-

genvalue whose eigenspace is spanned by the vector . Hence 

the given Lyapunov function can have value zero at the 

non-zero state vector . However, this value of the state vec-

tor, physically means that all the vehicles are converged at one 

single point while the CoG of the system is at a point (a,b) 

units away from them. This is clearly impossible unless both a 

and b are zero. Hence the state-space for this problem, natu-

rally excludes the eigen-space corresponding to the zero ei-

gen-vector of the connected L matrix. Hence the Lyapunov 

Function chosen is positive definite. Also note that   is a 

discontinuous function of  because of the discontinuity of L. 

Hence we have to define the generalized gradient of    as
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      (26)

where   . At point ∈  and   ,  all other 

  . Then, from Lyapunov theorem and Equations (26),

  
∈ 

 

 
  




  



  


 

  





 
  



  


 

  



 

 (27)

Now in the regions ∈ ,      , and all other 

     and the summation in the equation simplifies to 


  



 


 


≤  ∀ . When the corresponding 

s and s match, the summation in Equation (27) simplifies 

as above but at other times, its value is indefinite. However, 

  is an intersection of all these sets and since we have some 

sets which are strictly non-positive, the intersection of all these 

sets is strictly non-positive. So 

 ≤                                           (28)

Therefore, the system is stable with Lyapunov theorem. ￭
We now attempt to use the discontinuous version of the 

LaSalle’s theorem from [10] to get a better idea of the equili-

brium states of the system.

LaSalle’s Theorem: Let  be a compact set such that the 

Filippov solution to the autonomous system   ,  

   starting in  is unique and remains in  for all 

 ≥ . Let   → be a time independent regular function 

Lsuch that  ≤  for all ∈. Define   ∈ ∈. 

Then every trajectory in  converges to the largest invariant 

set , in the closure of  .

Proof: See [10]. ￭
Corollary 2: The dynamic system represented by Equation 

(23) is asymptotically stable about its Center of Gravity, i.e. 

around Z = 0.

Proof: Consider the function  defined in Equation (23). 

This function is defined on a large enough ball  of 
 . 

This can be done because as stated above the final states of 

the system are bounded. From Equation (28), we know that 

the set          . The largest invariant set in 

  is               . This is true 

because of our assumption of connectedness of the graph 

which implies that L has only a single zero eigen-value with 

corresponding eigenvector 1 and because as argued above, a 

and b have to be zero. Hence by applying Lasalle’s Theorem, 

we can conclude that all the vehicles will converge to a single 

point in the 2-dimensional space, which will also be its center 

of gravity. The CoG has been shown to be always stable and 

bounded above. Hence, the system is asymptotically stable 

around its C.G. ￭
Corollary 3: For the dynamical system in Equation (23), 

there exists a positive constant a independent of  and a class 

KL function  (.,.) such that

 ≤    ∀ ≥  ≥  ∀   

Furthermore, this bound is of the form

 ≤ 
  



∀ ≥  ≥  ∀  

                           (19)

Proof: The dynamical system in Equation (23) is asymptoti-

cally stable as shown above. Also, this stability is independent 

of . Hence it is also uniformly asymptotically stable. In ad-

dition, the dynamics of the system are piecewise continuous in 

  and locally Lipschitz in . Hence, using the definition of 

uniform asymptotic stability from [9], Equation (18) holds. 

Furthermore the dynamics of the system are piecewise constant 

and linear. The states of the system are thus continuous, 

though not differentiable, exponential functions. Thus the 

Equation (19) holds for some  and some . ￭
To verify above results, let us design a force law which 

acts like a spring of unstretched length  attached between 

neighboring vehicles as described in equation.


 


∈




  
∈










 


∈




  
∈



 




Three vehicles are initially positioned at (0,0), (300,100), 

(-200,300) with zero velocities. As shown in Figure 4, the 

state norm of the entire vehicles is maintained within a limit. 

The connectivity is assumed to be lost when the distance be-

tween the vehicles is larger than 400m.  is set to be 100N/m,
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Figure 4: Variation of state norm for a system with the 

force law

5. Conclusion

To keep the formation of a group of USVs, it is 

necessary to set the relationship between vehicles and 

forcing functions such as potential fields have been widely 

used in multi-agent systems.  The system including the 

forcing mechanism is discontinuous in nature as the analysis 

is not limited to a constant topology. However, an 

assumption is made that the communication topology, while 

changing, remains connected at all times. Filippov’s calculus 

of differential equations with discontinuous right hand sides 

is used in the analysis. The stability analysis is then used to 

come up with converse Lyapunov theorems for the 

discontinuous system. This result is expected to be used in 

designing force law to deploy and keep formation for 

multiple surface vehicles which usually have strong 

nonlinearities in both system dynamics and forcing laws. 

Environmental forces such as hydrodyanmics terms will be  

incorporated to represent more realistic systems.
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