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Abstract: In this study, the performance of a real-time micro telescopic monitoring system is evaluated, in which an artificial neural network is 

adopted for the diagnoses of vibratory bodies, such as solid piping system or machinery. The structural vibration was measured by a non-contact 

remote sensing method, in which images of a high-speed high-definition camera were used. The structural vibration data that can be obtained by the 

PIV (particle image velocimetry) technique were used for training the neural network. The structures of the neural network are dynamically changed 

and their performances are evaluated for the constructed diagnosis system. Optimized structures of the neural network are proposed for real-time 

diagnosis for the piping system. It was experimentally verified that the performances of the neural network used for real-time monitoring are 

influenced by the types of the vibration data, such as minimum, maximum and average values of the vibration data. It concludes that the time-mean 

values are most appropriate for monitoring the piping system. 
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1. Introduction 
It is not so easy for engineers’ naked eyes to check the working 

conditions of the piping system of nuclear power plants or various 

plants that are installed at higher locations. Generally, many sensors are 

installed at those systems to check their working conditions. 

Unfortunately, serious accidents occur due to malfunctions of electrical 

or electronic sensor systems installed at the plants [1]. This implies that 

there is no way to monitor the malfunctions of the piping and 

machinery system when the sensors installed at those systems were 

electrically or electronically out of order.  

In this study, the performance of a new non-contact monitoring 

system is evaluated, in which camera images for the piping and 

machinery systems are used for detecting their malfunctions.  

Actually, there have been several non-contact detection systems for 

machinery’s operating conditions. One of them is the speckle 

method[2], in which speckle patterns for the vibrational modes of the 

machinery are visualized by a pulsed illumination of laser. This method 

provides accurate results for the vibration modes. However, the 

arrangement of the laser system is very delicate and the processing time 

to get the analytical results is quite long. A cross-correlation method[3] 

 

 

using digital images was also reported, in which camera images were 

used for the analyses of the distortions of solid structures.  

This method also needs long processing time to get the analytical 

results on the distortion and stresses of the structures, because the results 

can be obtained only after the natural frequency of the structure has 

been calculated from the raw data. 

Time synchronous averaging method [4] was firstly proposed by 

Braun. This method is able to predict the vibrational characteristics of 

solid bodies from the synchronous signals. However, this method is a 

contact method. In order to measure the vibratory signals in real time, a 

Kalman filter was adopted by Shin [5]. 

In the meantime, Jeon et al.[1]proposed a new non-contact 

measurement technique which can monitor the working conditions of a 

target using an artificial neural network.  Since this technique uses the 

FFT signals of the target’s vibrations, monitoring is delayed. That is, the 

FFT signals are obtained after complete processing for the whole 

vibration signals. In order to avoid using the FFT signals for training the 

artificial neural network, real-time signals was adopted by them [6]. 

However, their study was restricted to short distance measurements.  
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In this study, microscopic and telescopic measurement was carried 

out to monitor the vibration status of solid bodies located in long 

distance. Further, the monitoring was attained in real time and three 

types of microscopic vibration signals were used for training the neural 

network. Maximum values, minimum values and mean values were 

evaluated for checking the performance of the neural network. As solid 

bodies, two mobile phones were installed in long distance.  

 

2. Measurement System 
 

 
Figure 1: Micro-telescopic measurement system for the detection of 

vibratory displacements of solid bodies in long distance 
 

 
Figure 2: Image of the target grid and two mobile phones. The target is 

attached onto the mobile phone (model A, model B) for imaging. 

 

Figure 1 shows the measurement system. It consists of four major 

parts, a measurement target, a laser light, a micro-telescopic camera 

system, and a host computer. In order to measure microscopic vibratory 

displacements of solid bodies, an imaging measurement technique 

called PIV (particle image velocimetry) [7] was adopted. In order to 

judge the vibratory status of the solid bodies that are located in long 

distance, at least 20 meters away from the measurement system, an 

artificial neural network [8] was adopted. Figure 2 shows the target grid 

and the used two mobile phones. The PIV system consists of a high 

speed camera (500 fps, 1k x 1k pixels), a microscope (x100) and a 

telescope (x20). For PIV calculation, the cross-correlation method [9] 

was adopted. In this method, the coefficient of the cross-correlation 

between time consecutive two images was evaluated. Equation (1) is 

the used equation for the calculation of the coefficient.  
 

(1) 
 

Here, fi and gi mean the image intensity of the two consecutive 

frames. Using this equation, the displacements of the target body were 

calculated. Using the coordinates of the displacement calculated from 

three consecutive images, the acceleration of the body can be calculated 

using Equation (2).  

 

                                                                                                   (2) 

 
 

Here, (x1, y1),  (x2, y2), and, (x3, y3) are the coordinate that can be 

calculated from the displacements.  
 

 

Figure 3: Used model of neural network 

 

Figure 2 shows the used model of neural network. The network 

consists of three layers, input layer, hidden layer and output layer. The 

hidden layer consists of 10 neurons. The vibratory data that can be 
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obtained from time consecutive accelerations of the target body using 

the PIV technique, and these data are trained for the input layer of the 

neural network in real time. Simultaneously, these acceleration data are 

also used for training the output layer. The number of data used for the 

input layer is changed dynamically so that real-time monitoring can be 

attained minimizing time loss. 

 

3. Results and Discussions 
3.1 Measurements on Transient Change of Vibration 

 
(a) no vibration 

 

 
(b) transient vibrating state (model A mobile phone) 

 

 
(c) transient vibrating state (model B mobile phone) 

Figure 4: Measured temporal acceleration data 

Figure 4 (a), Figure 4 (b) and Figure 4 (c) show the time history of 

the acceleration representing Equation (2) for three states. Figure 4 (a) 

shows the acceleration when there was no excitation of force. Even 

under no excitation, there exists acceleration. This is due to the vibration 

of the building where the mobile phone and the measurement system 

are installed. Figure 4 (b) and Figure 4 (c) show the temporal 

acceleration data obtained under the transient state for the model A 

phone and model B phone, respectively. From these two figures, it can 

be said that the two acceleration patterns are completely different. For 

the case of model A mobile phone, the abrupt change of the 

acceleration can be discriminate directly. However, for the case of 

model B, it is not so easy to say from the acceleration data that the 

mobile phone is under vibration state or not, because there is no 

conspicuous boundary between no-vibration and vibration states.  

3.2 Performance Test of Real-Time Monitoring with 

Maximum, Mean, Minimum Values 
The ideal signal pattern for the identification of different vibration 

state of the solid body is the stepwise function shape as shown in 

Figure 6 (b).  

Figure 5 shows the concept of real-time monitoring. The raw data of 

the acceleration calculated by the PIV technique were used for the 

training of the input layer. Simultaneously, a representative data, such as 

the maximum, the time-mean, and the minimum data were used for the 

training of the output layer. The representative data were sampled from 

the time consecutive acceleration data. The number of samples was 

adjusted for performance comparison for real-time monitoring. 

 

 
Figure 5: Concept of real-time monitoring. The data are used to train 

the neural network for real-time monitoring 
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Figure 6: Structure of sampling data used for training the output layer. 

N number of the sampled data was used and 1 data was shifted to the 

next.  

 

 
(a) with maximum values 

 

 
(b) with time mean values 

 

 
(c) with minimum values 

Figure 7: Monitoring results at the output layer of the neural network 

with three different values (Model A). 

Figure 6 shows the structure of sampling data that were used for 

training the output layer of the neural network in real time. N number of 

data was sampled for training at first, and the next data set was shifted to 

1 data, by which all data set are the same number. Figure 7 (a), Figure 

7 (b) and Figure 7 (c) show the monitoring results of the neural 

network in real time. Figure 7 (a) shows the monitoring results (output 

signals) when the maximum values of acceleration were used for 

training the output layer. Among 50 data, the maximum value was only 

used for training the output layer. In this manner, all maximum values 

among the next consecutive 50 sets were used for teaching the output 

layer. The output signals show random, from which clear prediction in 

real time on the working condition of the phone cannot be made.    

Figure 7 (b) shows the output signals when the time-mean values of 

acceleration were used for training the output layer. As shown in the 

figure, the pattern of the signal is a stepwise function and is a very clear 

pattern. This implies that this signal can be utilized for making a clear 

decision to take the next countermeasure for the solid body to be kept 

from an emergency circumstance or a mechanical trouble. Figure 7 (c) 

shows the monitoring results (output signals) when the minimum 

values of acceleration were used for training the output layer. It seems 

that the overall pattern or profiles of the each signal look like a stepwise 

one. However, each signal varies very randomly at each time step. This 

implies that this discontinuous data cannot be utilized to make a clear 

decision by an electric or an electronic apparatus.  

3.3 Performances Test for Different Data Number 
From the above test for the three different values (maximum, time 

mean, minimum), it was verified that the time mean values are most 

appropriate one to be taught for the output layer in order to make a clear 

decision, by which an electronic signal can be produced so that an 

automatic monitoring can be achieved. By the way, there is report on 

the optimized number of data to be used for sampling. Jeon et. al. [6] 

reported that the optimal sampling number was 50. However, their case 

was on the case of close-view not on the case of tele-distance view. For 

the case of tele-measurements, the optimal sampling number should be 

checked. In this section, the output signals were investigated changing 

the number of data sampling.  

Figure 8 (a), Figure 8 (b), Figure 8 (c) and Figure 8 (d) show the 

monitoring results when the number of data sampling was set to 10, 30, 

50 and 60, respectively. When the data sampling number was set to 10, 

the monitoring results showed very unstable signals. When the number 

was increased, the stepwise signals showed stable and clear pattern. 

This signals showed the clearest and most stable when the number was 

set to 60. This profile didn’t change anymore, even if the number was 
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increased. This implies that the most appropriate data number is close to 

60 for the cases of tele-measurements. 

 

 
(a) N=10 

 

 
(b) N=30 

 

 
(c) N=50 

 

 
(d) N=60 

Figure 8: Monitoring results for different data number (Model A) 

4. Conclusions 
A microscopic and telescopic monitoring system for the diagnosis of 

the vibratory solid bodies in remote was constructed. With the system, 

two mobile phones were installed at tele-distances (in this study, 

20meters away from the system), and the vibration of the phone was 

detected by the measurement system. From the experiments, the results 

are summarized as follows. 

A neural network was adopted for real-time monitoring, in which 

three different types of data signals, such as maximum, mean, 

minimum values among the sampled data were used for real-time 

diagnosis on the vibratory solid body. 

It was verified that time-mean value was most appropriate for real-

time monitoring.  

The most appropriate data sampling number was 60.  
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